期刊文献+

Al2O3-H2O纳米流体的导热性能 被引量:7

Thermal Conductivity of Al_2O_3-H_2O Nano-Fluid
在线阅读 下载PDF
导出
摘要 采用Hotdisk热物性分析仪测量了Al2O3-H2O纳米流体的导热系数,探讨了pH值、分散剂加入量和纳米粒子含量对导热性能的影响.结果表明:最适宜的pH值和分散剂加入量能显著提高水溶液中Al2O3表面Zeta电位的绝对值,增大颗粒间的静电排斥力,悬浮液分散稳定性较好,导热系数较高;从分散稳定和导热系数提高两个方面来考虑,最佳pH值为8.0左右;在0.10%Al2O3-H2O纳米流体中,十二烷基苯磺酸钠的最佳加入量为0.10%.Al2O3-H2O纳米流体的导热系数随纳米粒子含量的增大而非线性增大,且大于现有理论(Hamilton-Crosser模型)预测值. The thermal conductivity of Al2O3-H2O nano-fluid was measured using a Hotdisk thermophysical analyset, and the effects of pH value, dispersant concentration and nano-particle content ( mass fraction) on the thermal conductivity were investigated. The results show that, when the pH value and the dispersant dosage are both optimal, the absolute value of surface Zeta potential of Al2O3-H2O nano-fluid in aqueous solution significantly improves, thus increasing the electrostatic repulsive force among particles and resulting in better dispersion behavior and higher thermal conductivity of the nano-fluid. Moreover, it is found that pH 8.0 favors the dispersion behavior and the thermal conductivity, that the optimized content of sodium dodecylbenzenesulfonate is 0. 10% for 0. 10% Al2O3-H2O nano-fluid, and that the thermal conductivity of Al2O3-H2O nano-fluid, which is higher than that calculated based on the Hamilton-Crosser model, nonlinearly increases with the mass fraction of nano-particles.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第11期7-11,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(20346001) 高等学校博士学科点专项科研基金资助项目(20050561017) 教育部新世纪优秀人才支持计划项目(NCET-04-0826) 中国博士后基金资助项目(20060400219)
关键词 纳米氧化铝 纳米流体 ZETA电位 导热系数 nano-alumina nano-fluid Zeta potential thermal conductivity
作者简介 朱冬生(1964-),男,教授,博士生导师,主要从事强化传热、节能和制冷研究及应用.E-mail:cedshzhu@scut.edu.cn
  • 相关文献

参考文献12

  • 1Choi S U S. Enhancement thermal conductivity of fluids with nanoparticles [ C ]. New York : ASME Publications, 1995:99-105.
  • 2Li X F, Zhu D S, Wang X J. Evaluation on dispersion behavior of the aqueous copper nano-suspensions [ J ]. Journal of Colloid and Interface Science ,2007,310 (2):456- 463.
  • 3Li X F,Zhu D S, Chen G, et al. Influence of SDBS on Stability of Copper Nano-Suspensions [ C ] //Proceedings of International Conference on Integration and Commercialization of Micro and Nano-Systems. Sanya:ASME Pablications,2007:971-976.
  • 4Xuan Y M, Li Q. Heat transfer enhancement of nanofluids [J]. International Journal of Heat and Fluid Transfer, 2000,21 ( 1 ) :58-64.
  • 5宣益民,李强.纳米流体强化传热研究[J].工程热物理学报,2000,21(4):466-470. 被引量:85
  • 6Zhou L P, Wang B X. Experimental research on the thermophysical properties of nanoparticle suspensions using the quasi-steady state method [ C ] // Annual Proceedings Chinese Engineering Thermophysics. Dalian: 2002:889- 892.
  • 7Xie H Q, Wang J C, Xi T G, et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles [ J ]. Journal Applied Physics, 2002,91 ( 7 ) : 4586-4572.
  • 8Xie H Q, Wang J C, Xi T G, et al. Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid [ J ]. Journal of Materials Science Letters, 2002,21 (19) : 1469-1471.
  • 9Li C H, Peterson G P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) [ J ]. Journal of Applied Physics, 2006,99 ( 8 ) :084314-1-084314-8.
  • 10Lee D, Kim J-W, Kim B G. A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension [ J ]. Journal of Physical Chemistry B ,2006,110(9 ) :4323-4328.

二级参考文献12

  • 1宋晓岚,吴雪兰,曲鹏,王海波,邱冠周.纳米SiO_2分散稳定性能影响因素及作用机理研究[J].硅酸盐通报,2005,24(1):3-7. 被引量:64
  • 2吴会军,朱冬生,向兰.有机溶剂热法合成纳米材料的研究与发展[J].化工新型材料,2005,33(8):1-4. 被引量:29
  • 3李新芳,朱冬生.纳米流体传热性能研究进展与存在问题[J].化工进展,2006,25(8):875-879. 被引量:22
  • 4[1]Choi U S. Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME, FED, 1995, 231: 99
  • 5[2]Eastman J A, Choi U S and Li S et al. Enhanced Thermal Conductivity through the Development of Nanofluids. In: Komarneni S, Parker J C and Wollenberger H J. Nanophase and Nanocomposite Materials II, MRS,Pittsburgh, 1997, 3-11
  • 6[3]Lee S, Choi U S. Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems. ASME, PVP, 1996, 342: 227-234
  • 7[4]Hamilton R L, Crosser O K. Thermal Conductivity of Heterogeneous Two-component Systems. I \ EC Fundamentals, 1962, 1: 182-191
  • 8Li Xinfang, Zhu Dongsheng, Wang Xianju, et al.Influence of CTAB on stability of copper nano-suspensions[C].Proceedings of the International Symposium on Biophotonics, Nanophotonics and Metarnaterials, Hangzhou China, 2006, 363-366.
  • 9Choi S U S. Enhancement thermal conductivity of fluids with nanoparticles[J]. ASME, FED, 1995, 231:99- 105.
  • 10Li C H, Peterson G P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)[J].Journal of Applied Physics, 2006, 99 (8):084314 -1- 084314- 8.

共引文献106

同被引文献132

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部