1Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995). Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol, 108:1505-1517.
2Batschschauer A, Apel K (1984). An inverse control by phytochrome of the expression of two nuclear genes in barley. Eur J Biochem, 143:593-597.
3Beale SI (2005). Green genes gleaned. Trends Plant Sci, 10: 309-312.
4Block MA, Joyard J, Douce R (1980). Site of synthesis of geranylgeraniol derivatives in intact spinach chloroplasts. Biochim Biophys Acta, 631:210-219.
5Castelfranco PA, Jones OTG (1975). Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol, 55:485-490.
6Castelfranco PA, Jones OTG (1975). Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol, 55:485-490.
7Chen MW, Jahn D, O'Neill GP, Soll D (1990). Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in δ-aminolevulinic acid formation during chlorophyll biosynthesis. J Biol Chem, 265:4058-4063.
8Chory J, Peto CA, Ashbaugh M (1989). Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thalfana mutants. Plant Cell, 1: 867-880.
9Davies TGE, Thomas H, Thomas BJ, Rogers LJ (1990). Leaf senescence in a nonyellowing mutant of Festuca protensis: Metabolism of cytochrome f. Plant Physiol, 93:588-595.
10Falbel TG, Meehl JB, Staehelin LA (1996). Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol, 112:821-832.