期刊文献+

非光滑准凸函数的某些特征

Some characters of nonsmooth preinvex functions
在线阅读 下载PDF
导出
摘要 文章运用非光滑分析技巧,讨论了一类非光滑的准凸函数,得到它的某些等价特征,将相关的结论推广到非光滑的情形,从而使得它们在优化理论中的应用范围更加广泛。 This paper discusses non-smooth preinvex functions. By using nonsmooth analysis techniques, some characters of preinvexity in the setting of non-smooth cases are obtained. The relevant results can be applied more extensively in the optimization theory.
作者 方正
机构地区 江南大学理学院
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第12期2077-2079,共3页 Journal of Hefei University of Technology:Natural Science
关键词 非光滑分析 invex集 INVEX函数 preinvex函数 η单调映射 nonsmooth analysis invex set invex function preinvex function η-monotone mapping
作者简介 方正(1976-),男,安徽歙县人,江南大学讲师
  • 相关文献

参考文献11

  • 1Hanson M A. On sufficiency of the Kuhn Tucker conditions [J]. J Math Anal Appl,1981, 80:545-550.
  • 2Ben-israel A, Mond B. What is invexity? [J]. J Aust Math Soc Ser B, 1986,28:1-9.
  • 3Khan M F, Salahuddin. On generalized vector variationallike inequalities [J]. Nonlinear Analysis, 2004, 59 ( 6 ) : 879-889.
  • 4Mishra S K, Wang S Y. Vector variational-like inequalities and nonsmooth vector optimization problems[J]. Nonlinear Analysis, 2006, 64(9) : 1939-1945.
  • 5Fan Liya, Guo Yunlian. On strongly g-preinvex functions [J]. J Math Anal Appl,2007, 330(2) :1412-1425.
  • 6Noor M A, Noor K I. Some characterizations of strongly preinvex functions[J]. J Math Anal Appl, 2006, 316(2) 697-706.
  • 7Luo H Z, Xu Z K. On characterizations of prequasi-invex funeations[J]. J Optim Theory Appl, 2004,120 : 429-439.
  • 8Aussel D. Subdifferential properties of quasiconvex and pseudoeonvex functions:unified approach[J]. J Optim Theory Appl, 1998,97 : 29-45.
  • 9Penot J P, Quang P H. Generalized convexity of functions and generalized monotonicity of set-valued maps[J]. J Optim Theory Appl, 1997,92: 343-356.
  • 10Clarke F H,Ledyaev Yu S, Stern R J,et al. Nonsmooth analysis and control theory: graduate texts in mathematics [M]. New York: Springer-Verlag, 1998 : 70-80.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部