期刊文献+

基于不均匀密度的自动聚类算法 被引量:3

Auto-clustering Algorithm Based on Non-uniform Density
在线阅读 下载PDF
导出
摘要 针对基于密度的聚类算法不能自动处理密度分布不均匀的数据问题,提出一种基于不均匀密度的自动聚类算法。该算法既保持了一般基于密度算法的优点,也能有效地处理分布不均匀的数据。实验结果表明,该算法是有效的。 According to the fact that few density-based clustering algorithm can automatically process the data with non-uniform density, an auto-clustering algorithm based on non-uniform density is proposed. This algorithm has all the merits of the existed density-based clustering algorithm and can deal with the date effectively. Experimental results show its efficiency.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第23期86-88,共3页 Computer Engineering
基金 国家"十五"计划基金资助项目"中国高等教育文献保障系统(CALIS)二期工程"(发改社会[2004]1659号)
关键词 聚类 密度 不均匀 数据挖掘 clustering density non-uniform data mining
作者简介 崔尚卿(1983-),男,硕士研究生,主研方向:数据挖掘,数字图书馆;E-mail:cuisq@cis.pku.edu.cn 马秀莉,讲师、博士; 唐世渭,教授、博士生导师; 王文清,高级工程师、博士
  • 相关文献

参考文献5

  • 1Ester M. A Density-based Algorithm for Discovering Clusters in Large Databases with Noise[C]//Proc. of the 2nd ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Portland, OR, USA: [s. n.], 1996.
  • 2Liu Dongquan, Sourina O, Free-parameters Clustering of Spatial Data with Non-uniform Density[C]//Proc. of the 2004 IEEE Conf. on Cybernetics and Intelligent Systems. Singapore: [s. n.], 2004.
  • 3Kamber M. Data Mining: Concepts and Techniques[M]. [S. l.]: Morgan Kaufmann Press, 2006.
  • 4Alexander An Efficient Approach to Clustering in Large Multimedia Databases with Noise[C]//Proc. of American Association for Artificial Intelligence. Madison, Wisconsin, USA: [s. n.], 1998.
  • 5马帅,王腾蛟,唐世渭,杨冬青,高军.一种基于参考点和密度的快速聚类算法[J].软件学报,2003,14(6):1089-1095. 被引量:108

二级参考文献8

  • 1Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176.
  • 2Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 3Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231.
  • 4Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. "73-84.
  • 5Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle: ACM Press, 1998.94-105.
  • 6Alexandros N, Yannis T,Yannis M. C^2P: clustering based on closest pairs. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S,Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma:Morgan Kaufmann Publishers, 2001. 331-340.
  • 7Berchtold S, Bohm C, Kriegel H-P. The pyramid-technique: towards breaking the curse of dimensionality. In: Haas LM, Tiwary A,eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 142- 153.
  • 8Yu C, Ooi BC, Tan K-L, Jagadish HV. Indexing the distance: an efficient method to KNN processing. In: Apers PMG, Atzeni P,Ceri S, Paraboschi S, Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001. 421--430.

共引文献107

同被引文献28

  • 1陈小荷.从自动句法分析角度看汉语词类问题[J].语言教学与研究,1999(3):63-72. 被引量:23
  • 2Boley D, Gini M, Gross R, et al. Partitioning - based Clustering for Web Document Categorization [ J ]. Decision Support Systems, 1999, 27(3) :329 -341.
  • 3Mao J, Jain A K. A Self- organizing Network for Hypellipsoidal Clustering [J]. 1EEE Transactions on Neural Networks, 1996, 7 (1) :16 -29.
  • 4I Cai W, Chen S, Zhang D. Fast and Robust Fuzzy C - means Clus- tering Algorithms Incorporating Local Information for Image Seg- mentation[ J ]. Pattern Recognition, 2007, 40(3 ) :825 - 838.
  • 5Chen H H, Lin C J. A Multilingual News Summarizer[ C]. In: Proceedings of the 18th International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguis- tics, 2000 : 159 - 165.
  • 6Leftin L J. Newsblaster Russian - English Clustering Performance Analysis [ R ]. Columbia Computer Science Technical Reports, 2003.
  • 7Evans D K, Klavans J L, McKeown K R. Columbia Newsblaster: Muhilingual News Summarization on the Web Demonstration [ C ]. In : Proceedings of HLT - NAACL 2004. Stroudsburg: Association for Computational Linguistics, 2004 : 1 -4.
  • 8Mathieu B, Besancon R, Fluhr C. Muhilingual Document Clusters Discovery [ C] . In : Proceedings of RIAO 2004. 2004 : 116 - 125.
  • 9Dhillon 1 S, Mallela S, Kumar R. A Divisive Information Theoretic Feature Clustering Algorithm for Text Classification [ J ]. The Jour- nal of Machine Learning Research,2003,3 ( 1 ) : 1265 - 1287.
  • 10Marcus M P, Marcinkiewicz M A, Santorini B. Building a Large An- notated Corpus of English : The Penn Treebank [ J ]. Computational Linguistics, 1993,19 ( 2 ) :313 - 330.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部