期刊文献+

带自由面流体运动的单相格子Boltzmann方法模拟 被引量:6

Single-phase lattice Boltzmann model for free-surface flow
原文传递
导出
摘要 采用Thurey提出的单相格子Boltzmann方法模拟了带自由面流体的运动。它在标准的单相模型的基础上将每个格子标记为气体、液体或自由面。格子的类型通过计算格子间的质量通量来重新初始化。与多相模型相比,它不需要求解气相格子的运动,提高了计算效率。针对此方法,给出了一种来流和出流边界条件的提法。最后,计算了来流被竖直圆柱阻挡,破碎成两股后又接合起来运动的动态过程。结果表明,此方法能描述来流经圆柱后高度降低,并形成涡等现象。 The single-phase lattice Boltzmann method proposed by Thurey was used to solve free-surface flow problems. Based on the standard single-phase model, the method tags each cell with a corresponding type, e.g. gas, fluid or interface. The type is re-initialized by calculating the mass fluxes between neighboring ceils. In contrast to the multi-phase models, simulating the gas phase motion is not needed, so the computation efficiency is improved. Inflow and outflow boundary conditions for the method were given to simulate the dynamical process of flow obstructed by a 3-D cylinder, i, e. the flow was broken into two parts and these two parts then merge again. Tests indicate that the method can reasonably describe and explain some phenomena, such as the reduced height and the vortex formation behind the cylinder.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第11期2017-2020,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(10302013 10572022)
关键词 自由面 格子BOLTZMANN方法 来流 出流 圆柱 free surface lattice Boltzmann method inflow outflow cylinder
作者简介 汤波(1982-),男(汉),安徽,博士研究生。 通讯联系人:王天舒,副教授,E-mail:tswang@tsinghua.edu.cn
  • 相关文献

参考文献14

  • 1Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and interracial flow [J]. Annual Review of Fluid Mechanics, 1999, 31 :567 - 603.
  • 2Chen S, Doolen G D. Lattice Boltzmann method for fluid flows [J]. Annual Review of Fluid Mechanics, 1998, 30:329 - 364.
  • 3Gunstensen A K, Rothman D H, Zaleski S, et al. Lattice Boltzmann model of immiscible fluids [J]. Physical Review A, 1991, 43(8):4320-4327.
  • 4Inamuro T, Ogata T, Tajima S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences [J]. Journal of Computational Physics, 2004, 198(2): 628 - 644.
  • 5Thurey N. Physically Based Animation of Free Surface Flows with the Lattice Boltzmann Method [D]. Nuremberg: University of Erlangen, 2007.
  • 6Buick J M, Greated C A. Gravity in a lattice Boltzmann model [J]. Physical Review E, 2000, 61(5): 5307- 5320.
  • 7Sterling J D, Chen S Y. Stability analysis of lattice Boltzmann methods [J]. Journal of Computational Physics, 1996, 123(1): 196-206.
  • 8Hou S, Sterling J, Chen S, et al. A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows [J]. Fields Institute Communication, 1996, 6:151-166.
  • 9Thurey N, Pohl T, Rude U, et al. Optimization and stabilization of LBM free surface flow simulations using adaptive parameterization [J]. Computers & Fluids, 2006, 35(8 - 9) : 934 - 939.
  • 10Zou Q S, He X Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591 - 1598.

二级参考文献7

  • 1[1]Tezduyar T E, Ganjoo D K. Petrov-Galerin formulations with weighting functions dependent upon spatial and temporal discretion: application to transient convection-diffusion problems [J].Comput Methods Appl Mech Eng, 1985, 59: 49-71.
  • 2[2]Donea J, Quartapelle L, Selmin V. An analysis of time discretization in the finite element solution of hyperbolic problems [J]. J Comput Phys, 1978, 70: 463-499.
  • 3[3]Kawahara M. Convergence of finite element Lax-Wendroff method for linear hyperbolic differential equation [A]. Proc JSCE [C]. Tokyo, 1976, 253: 95107.
  • 4[4]Jiang C B, Kawahara M, Kashiyama K. A Taylor-Galerkin based finite element method for turbulent flows [J]. Fluid Dynamics Research, 1992, 9: 165-178.
  • 5[5]Gresho P M, Chan S T, Lee R L, et al. A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations, Part 1: Theory [J]. Int J Num Methods in Fluids, 1984, 4: 557-598.
  • 6[6]Johnson A A, Tezduyar T E. Parallel computation of incompressible flows with complex geometries [J]. Int J Numerical Methods in Fluids, 1997, 24: 1321-1340.
  • 7[7]Williamson C H. Three-dimensional wake transition [J]. J Fluid Mech, 1996, 328: 345-407.

共引文献4

同被引文献31

  • 1吕衣礼,张启勋,周尧和.薄壁件反重力铸造中的充填流体形态[J].特种铸造及有色合金,1994,14(4):1-4. 被引量:24
  • 2张舒娟,侯华,杨晶,毛红奎.充型过程的数值模拟技术[J].材料导报,2007,21(3):104-107. 被引量:7
  • 3DUAN Ya-li LIU Ru-xun.LATTICE BOLTZMANN SIMULATIONS OF TRIAGULAR CAVITY FLOW AND FREE-SURFACE PROBLEMS[J].Journal of Hydrodynamics,2007,19(2):127-134. 被引量:7
  • 4陈九锡 颜开.用MAC方法计算平头物体垂直等速入水空泡.空气动力学学报,1986,4(1):47-55.
  • 5Kleefsman K M T, Fekken G, Veldman A E P, et al. A Volume-of-Fluid based simulation method for wave impact problems[J]. Journal of Computational Physics, 2005, 206: 363-393.
  • 6龚凯,刘桦.圆盘垂直入水的SPH数值模拟[C].成都:第二十届全国水动力学研讨会文集,2007.
  • 7Raymond Bergmann, Devaray van der Meer, Gekle, et al. Controlled impact of a disk on a water surface: Cavity dynamics [J]. Journal of Fluid Mechanics, 2009, 633: 381-409.
  • 8Luo L S. The lattice-gas and lattice Bohzmann methods: past, present and future[C]//Proceeding of International Conference on Applied Computational Fluid Dynamics. Beijing, China, 2000.
  • 9Nils Thurey. Physically based animation of free surface flows with the Lattice Bohzmann Method[D]. PHD Thesis, Univesity of Erlangen-Nuremberg, 2007.
  • 10Qian Y, d'Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17 (6), 479-484.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部