期刊文献+

基于SUKF的机载无源定位算法

A passive location algorithm for airborne observer based on SUKF
在线阅读 下载PDF
导出
摘要 提出了相位差变化率与SUKF算法相结合的单站无源定位方法.通过Matlab仿真,对SUKF与原始的UKF和成熟的EKF进行了比较.结果表明:与UKF相比,SUKF降低了运算复杂度,在保证了UKF的定位精度的同时减少了计算量;并且SUKF和UKF算法均无需去计算EKF中的雅克比矩阵,实现简单,具有更高的收敛速度和定位精度. A new single-station passive location method, which combines the phase-difference changing rate and SUKF algorithm,was proposed. Through simulations with Matlab software, SUKF was compared with primitive UKF and mature EKF. The results showed that, compared with UKF, SUKF has lowered the operational complexity and reduced the computational quantity, but guaranteeing the location precision of UKF. Furthermore, both SUKF and UKF algorithms don't need to calculate the Jacobi matrix in EKF, so it is easy to be implemented. Also, the proposed method possesses faster convergence speed and higher location precision.
出处 《应用科技》 CAS 2008年第11期31-34,共4页 Applied Science and Technology
关键词 无源定位 相位差变化率 UKF SUKF passive localization phase-difference changing rate UKF SUKF
作者简介 吕大伟(1982-),男,硕士研究生,主要研究方向:宽带信号检测、处理与识别,E—mail:tabkk@126.com.
  • 相关文献

参考文献5

二级参考文献16

  • 1徐济仁.测向定位中若干问题的探讨[J].无线电工程,2001,31(z1):122-123. 被引量:7
  • 2Taek L Song,Jason L Speyer.Astochastic analysis of a Modified Gain Extened Kalman Filter with applications to estimation with bearing-only measurements[J].IEEE Transactions on Automatic Control,1985,AC-30(10):940-949.
  • 3Jon Wilson.Precision Location and identitication:A revolution in threat warning and situational awareness[J].Journal of Electronic Defense,1999,(11):43-48.
  • 4ARJha(张孝霖陈世达舒郁文译).红外技术应用[M].化学工业出版社,2004,10..
  • 5TAFF L G.Target Localization from Bearing-only Observations[J].IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):2-9.
  • 6Gordon NJ,Sal mond DJ,and Smith A F M.A No-vel Approach to Nonlinear/Non-Gaussian Bayesian State Esti mation[].IEE Proceedings.1993
  • 7Arulampalam MS,Maskell S,Gordon N.A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[].IEEE Trans on Signal Process-ing.2002
  • 8Kal man R E.A New Approachto Linear Filtering and Prediction Problems[].Trans ASMEJournal of Basic Engineering.1960
  • 9Hastings WK.Monte Carlo Sampling Methods Using Markov Chains and Their Applications[].Biometrika.1970
  • 10Crisan D,and Doucet A.A Survey of Convergence Results on Particle Filtering Methods for Practitioners[].IEEE Transactions on Signal Processing.2002

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部