期刊文献+

基于语义扩展的个性化知识推荐系统 被引量:7

The personalized knowledge recommendation system based on semantic expansion
在线阅读 下载PDF
导出
摘要 构建个性化知识推荐系统是数字图书馆实现个性化信息服务的有效手段,推荐服务的关键在于完整地理解用户偏好并能准确作出判断。提出了一种基于语义扩展的知识推荐方法,通过分析读者文献检索、浏览的行为提取读者偏好,利用扩展激活模型建立读者偏好档案,据此对文献资源进行匹配和分级,从而向读者提供个性化的知识推荐服务。 Personalized knowledge recommendation is the effective measure to provide individual information service in digital library, however, a complete understanding of user profile and accurate recommendation are essential. In this paper, the method adopts a semantic--expansion approach to build the user profile by analyzing documents previously read by the person. Once the customer profile is constructed, personalized contents can be provided by the system.
作者 董兵 吴秀玲
机构地区 中北大学图书馆
出处 《图书馆学研究》 CSSCI 2008年第11期44-49,共6页 Research on Library Science
关键词 个性化服务 知识推荐 语义扩展 personalized information service knowledge recommendation semantic expansion
  • 相关文献

参考文献15

  • 1G.Adomavicius, A. Tuzhilin. Personalization techni.ques: a process-oriented perspective. Communications of the ACM, 2008, 48 (10): 83-90
  • 2谢逸,余顺争.基于Web用户浏览行为的统计异常检测[J].软件学报,2007,18(4):967-977. 被引量:42
  • 3杜瑾,刘均,郑庆华,丁娇,龚智勇,韩殿哲.一种基于网页元数据的用户访问行为建模方法[J].西安交通大学学报,2008,42(2):152-155. 被引量:3
  • 4高凤荣,马文峰,王珊.数字图书馆个性化信息推荐系统研究[J].情报理论与实践,2003,26(4):359-362. 被引量:40
  • 5M. Montaner, B. Lopez, L. D. A. Mesa. A taxonomy of recommender agents and the Internet. Artificial Intelligence Review, 2003, 19:285-330
  • 6G. Beyah, P. Xu, H.G. Woo, K. Mohan, et al. Development of an instrument to study t:he use of recommendation systems. In: Proceedings of the Ninth Americas Conference on Information Systems, Tampa, FL, USA, 2003:269-279
  • 7C. P. Wei, M.J. Shaw, R. F. Eastey. A survey of recommendation systems in electronic commerce, in: R. T. Rust, P. K. Kannan (Eds.), e-Service, New Directions in Theory and Practice, M. E. Sharpe Publisher, 2002
  • 8J. B. Schafer, J. A. Konstan, J. Riedl. E-commerce recommendation applications. Data Mining and Knowledge Discovery, 2001, 5 (1): 115-153
  • 9H. Sakagami, T. Kamba. Learning personal preferences on online newspaper articles from user behaviors. Computer Networks and ISDN Systems, 1997, 29:1447-1455
  • 10K.J. Mock, V.R. Vemuri. lnformation filtering via hill climbing, WordNet, and index patterns. Information Processing & Management, 1997, 33 (5):633-644

二级参考文献21

  • 1谢逸,余顺争.基于Web用户浏览行为的统计异常检测[J].软件学报,2007,18(4):967-977. 被引量:42
  • 2..www. google. com.,.
  • 3..www.almaden.ibm.com/cs/k53/clever.html,.
  • 4..www.research.digital.com/SRC/WebArcheology,.
  • 5Delgado J.Agent-based Information Filtering and Recommender System on the Internet: [Dissertation] .Nagoya Institute of Technology, 2000.
  • 6Balabanovic M, Shoham Y.Fab: Content-based, Collaborative Recommendation.Communications of the ACM, 1997, 40 (3): 66-72.
  • 7Meiville P, Mooney R J, Nagarajan R.Content-boosted Collaborative Filtering.In: Proceedings of the SIGIR-2001 Wrokshop on Recommender Systems. New Orleans : [s.n.], 2001.
  • 8Resnick R, Varian R.Recommender Systems.Special Issue of Communication of the ACM, 1997, 40 (3).
  • 9Aggarwal C C, Yu P S.Data Mining Technique for Personalization.In: Bulletin of the Technical Committee on Data Engineering,2000 March.4 ~ 9.
  • 10Pazzani M.A Framework for Collaborative, Content-based and Demographic Faltering.In: Artificial Intelligence Review, 2001.1 ~ 16.

共引文献80

同被引文献114

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部