期刊文献+

周期吸附系统的分布混沌 被引量:3

Distributional Chaos of Periodically Adsorbing System
原文传递
导出
摘要 由一个紧致度量空间X以及连续映射f:X→X所组成的偶对(X,f)称之为一个动力系统.若存在f的不动点p以及另一周期点q,使得对于任一非空开集U(?)X,都有∪_(n=0)~∞f^n(U)含有p和q,则称(X,f)是一个周期吸附系统,其中f^i表示f的i次迭代.本文指出:若(X,f)是一个周期吸附系统并且X是自密的,则存在一个f的分布混沌集D,使得D与每一非空开集之交都包含着一个Cantor集. By a dynamical system (X, f) we mean a compact metric space X together with a continuous map f : X →X. A dynamical system (X, f) is called a periodically adsorbing system if there exist a fixed point p and a periodic point q ≠ p of f such that for any nonempty open set U ∩→ X, the set U∞n=1fn(U)) contains both p and q, where f^i is the ith iteration of f. It turns out that if (X, f) is a periodically adsorbing system and X is perfect, then there exists a distributional chaotic set D of f such that the intersection of D and any nonempty open set contains a Cantor set.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第6期1109-1114,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10771079 10471049)
关键词 分布混沌 周期吸附系统 动力系统 distributional chaos periodically adsorbing system dynamical system
作者简介 E—mail:ljie@scnu.edu.cn; E—mail:xiongjch@scnu.edu.cn; E—mail:tanfeng@scnu.edu.cn
  • 相关文献

参考文献2

二级参考文献15

  • 1Liao,G .F.Anoteonachaoticmapwithtopologicalentropy0. NortheasternMathematicalJournal . 1986
  • 2Misurewicz,M,Sm姫tal,J.SmoothchaoticmapswithzerotopologicalentropyErgTh&DynSys,1988.
  • 3Zhou,Z .L,Liao,G .F,Wang,L .Y.Thepositivetopologicalentropynotequivalenttochaos———aclassofsubshifts. ScienceinChina,SerA . 1994
  • 4Erd s,P,Stone,A .H.Orbit closuredecompositionsandalmostperiodicproperties. Bulletin of the American Mathematical Society . 1945
  • 5Schweizer B,Smital J.Measures of chaos and a spectral decomposition of dynamical systems on the interval. Transactions of the American Mathematical Society . 1994
  • 6Sm姫tal,J.Chaoticfunctionswithzerotopologicalentropy,TransJournal of the American Mathematical Society,1986.
  • 7T. Y. Li,J. A. Yorke.Period three implies chaos. The American Mathematical Monthly . 1975
  • 8Schweizer,B.,Sklar,A. Probabilistic metric spaces . 1983
  • 9Xiong,J. C.A chaotic map with topological entropy 0. Acta Mathematica . 1986
  • 10Zhou,Z. L.Weakly almost periodic points and measure centre, Science in China, Ser. A . 1993

共引文献36

同被引文献14

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部