期刊文献+

基于小波包的2D-HMM离心泵故障诊断 被引量:2

2D-HMM Fault Diagnosis for Centrifugal Pump Based on Wavelet Packet
在线阅读 下载PDF
导出
摘要 根据离心泵故障振动信号的特点,提出了一种结合小波包与二维隐马尔可夫模型(2D-HMM)的离心泵故障诊断方法。利用小波包分解对信号进行精确细分的特点,构造出相应的能量谱作为离心泵运行状态的特征向量,并以此作为2D-HMM的输入进行训练,建立了基于2D-HMM的离心泵运行状态分类器,用以识别离心泵状态。最后通过2BA-6A离心泵试验系统验证了该方法的有效性。 According to the characteristics of fault vibration signal, a new method for centrifugal pump based on wavelet packet and 2D hidden Markov model (2D-HMM) is produced. The energy spectrum from the wavelet packet decomposition can be used as feature vectors of running state of a centrifugal pump to train 2D-HMM. So the classified model based on 2D-HMM is constructed. The model is tested with experimental data collected from the experimental systems of 2BA-6A centrifugal pump. Finally, the result demonstrates that the model is effective to classify faults in speed-up process of a centrifugal pump.
出处 《数据采集与处理》 CSCD 北大核心 2008年第B09期140-144,共5页 Journal of Data Acquisition and Processing
基金 吉林省教育厅科学技术研究(2007047)资助项目
关键词 离心泵 故障诊断 小波包分解 二维隐Markov模型 centrifugal pump fault diagnosis wavelet packet decomposition two-dimensional hidden Markov model (2D-HMM)
作者简介 周云龙(1960-),男,博士,教授,博士生导师,研究方向:流体机械,状态监测及故障诊断等,E—mail:zyl@mail.nedu.edu.cn; 柳长昕(1981-),男,硕士研究生,研究方向:流体机械及热能设备的故障诊断; 赵鹏(1976-),男,博士研究生,研究方向;流体机械及热能设备故障诊断。
  • 相关文献

参考文献6

  • 1周云龙,洪君,赵鹏.HHT与RBF神经网络在离心泵故障振动信号处理中的应用[J].热能动力工程,2007,22(1):84-87. 被引量:16
  • 2Newland D E. Progress in the application of wavelet theory to vibration analysis[C]//15th Proceedings of the 1995 ASME Design Engineering Technical Conference. Boston, MA, USA, 1995, 2:103-107.
  • 3洪君,樊志华,王锦锋,周云龙.小波包和模糊神经网络在离心泵故障振动信号处理中的应用[J].华电技术,2006,29(9):1-5. 被引量:5
  • 4Ocak H, Loparo K A. New bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals proeeedings [C]//2001 IEEE International Conference. Baltimore, Maryland, USA:[s.n. ],2001, 5: 3141-3144.
  • 5Agazzi O E, Kuo S. Joint normalization and recognition of degraded document images using pseudo- 2D hidden Markov models[C]//Proceedings of the Seeond International Conference. Boston, USA, 1993,2: 155-158.
  • 6Katrin W, Samy B, Bourlard H, et al. HMM 2 a novel approach to HMM emission probability estimation[C] //International Conference on Spoken Language Processing. Beijing, China:[s. n.], 2001, 10 (2):136-138.

二级参考文献12

  • 1[3]Muszynska,A.Vibrational Diagnostics of Rotating Machinery Malfunctions[J].Vki,Vibration and Rotor Dynamics.1993,(3270):12~39.
  • 2[5]Kosko B.Fuzzy associative memories[A].Fuzzy Expert System Reading[C].MA:Addition Wiley,1987.
  • 3LIU B,LING S F.On the selection of informative wavelets for machinery diagnosis[J].Mechanical Systems & Signal Processing,1999,13(1):145-162.
  • 4ANDRATE M A,MESSINA A R,RIVERA C A,et al.Identification of instantaneous attributes of torsional shaft signals using the Hilbert transform[J].IEEE Transactions on Power Systems,2004,19(3):1422-1429.
  • 5HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London Series A,1998,454:903-995.
  • 6CHEN S,COWAN C F N.GRANT P M.Orthogonal least squares learning algorithm for radial basis function networks[J].IEEE Trans Neural Networks,1991(2):302-309.
  • 7ROBERT J,SCHILLING JAMES,CARROLL J.Approximation of nonlinear systems with radial basis function neural networks[J].IEEE Transactions on Neural Networks,2001,12(1):21-28.
  • 8刘普寅,张汉江,吴孟达,成礼智,汪浩.模糊神经网络理论研究综述[J].模糊系统与数学,1998,12(1):77-87. 被引量:29
  • 9陈长征,罗跃纲,张省,虞和济.基于小波分析的机械故障特征提取研究[J].机械强度,2001,23(2):161-164. 被引量:28
  • 10李世雄,陈东方.信号瞬时参数计算方法评价[J].信号处理,2003,19(1):59-63. 被引量:41

共引文献15

同被引文献39

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部