期刊文献+

基于智能全间隔自适应模糊支持向量机的水质分类 被引量:1

Classification of water quality based on intelligent total margin adaptive fuzzy support vector machine
在线阅读 下载PDF
导出
摘要 提出了一种新型具有良好特性的支持向量机——全间隔自适应模糊支持向量机(TAFSVM)。运用实值遗传算法(RGA)对其进行参数优选,得到一种新的智能模型——实值遗传算法优化的全间隔自适应模糊支持向量机(RGATAFSVM)模型,并且应用于四种不同的水质数据分类。实验结果表明,提出的模型相对标准支持向量机、BP神经网络和单因子分类方法具有较高的分类精度和较高的稳定性,是一种有效的水质分类方法。 In this study, Total-margin Adaptive Fuzzy Support Vector Machine (TAFSVM) of good quality was proposed. Inaddition, Real-valued Genetic Algorithm (RGA) optimized its parameters. Subsequently, the model of Real Genetic Algorithms Total Margin Adaptive Fuzzy Support Vector Machine (RGATAFSVM) was used to classify four kinds of data sets of water quality. The experimental results show that the proposed model can achieve higher classification accuracy and stability than standard support vector machine, BP neural networks and single factor assessment. Consequently, the RGATAFSVM model provides a promising alternative for classification in water quality.
出处 《计算机应用》 CSCD 北大核心 2008年第11期2847-2849,2870,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(6057500410771220) 教育部高等学校博士点科研基金资助项目(SRFDP-20070558043)
关键词 全间隔自适应模糊支持向量机 实值遗传算法 水质 分类 Total-margin Adaptive Fuzzy Support Vector Machine (TAFSVM) Real-valued Genetic Algorithms (RGA) water quality classification
作者简介 daihongliang@tom.com戴宏亮(1978-),男,湖北安陆人,讲师,博士研究生,主要研究方向:模式识别与知识发现、小波分析及应用; 戴道清(1963-),男,湖南桃源人,教授,博士生导师,主要研究方向:复分析与小波分析、模式识别与知识发现、图像处理。
  • 相关文献

参考文献17

二级参考文献61

共引文献172

同被引文献11

  • 1Kaul A,Rao V R.Research for product positioning and design decisions[J].International Journal of Research in Marketing,1995,12(2):293-320.
  • 2Shimizu Y,Jindo T.A fuzzy logic analysis method for evaluating human sensitivities[J].International Journal of Industrial Ergonomics,1995,15(2):39-47.
  • 3Han S H,Kim K J,Yun M H,et al.Identifying mobile phone design features critical to user satisfaction[J].Human Factors and Ergonomics in Manufacturing,2004,14(1):15-29.
  • 4Jindo T,Hirasago K,Nagamachi M.Development of a design support system for office chairs using 3-D graphics[J].International Journal of Industrial Ergonomics,1995,15(6):49-62.
  • 5Hsu S H,Chuang M C,Chang C C.A semantic differential study of designers and users product form perception[J].International Journal of Industrial Ergonomics,2000,25(3):375-391.
  • 6Park J,Han S H.A fuzzy rule-based approach to modeling affective user satisfaction towards office chair design[J].International Journal of Industrial Ergonomics,2004,34(7):31-47.
  • 7Burges C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):955-974.
  • 8Scholkopf B,Guyon I,Wetson J.Statistical learning and kernel methods in bioinformatics[M].The Amsterdam:IOS Press,2003.
  • 9Huang H P,Liu Y H.Fuzzy support vector machines for pattern recognition and data mining[J].International Journal of Fuzzy Systems,2002,4(3):826-835.
  • 10Duan K B,Keerthi S S.Which is the best multi class SVM method? An empirical study[J].Multiple Classifier Systems,2005,8(3):278-285.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部