期刊文献+

曲线数据压缩的总体最小二乘算法 被引量:13

Polyline data compression using total least squares
在线阅读 下载PDF
导出
摘要 在曲线数据压缩的Ramer-Douglas-Peucker(RDP)算法中,只有那些垂距大于限差的点得以保留,而原始曲线上所有其他点则会被删除,这就使得压缩后的数据在保留点和删除点处精度不一致.通过采用总体最小二乘法对原始数据进行分段拟合,提高了压缩数据的精度.实验结果表明,与RDP算法相比,该算法可以更好地逼近原始数据,特别是当给定限差较大时,相对RDP算法的精度改善更为明显. In the well-known Ramer-Douglas-Peucker (RDP) algorithm for polyline data compression, only the points with distance greater than a given tolerance from polyline (a chain of vertices) to segment (the first and last vertices of the polyline) are retained, while all other points on the original polyline are deleted. This gives rise to inconsistent data compression accuracy among the retained and the deleted points. In this paper, a new algorithm based on total least squares is presented, which takes each subset of a polyline as a processing unit and uses all the points on the original polyline to fit a new line. These fitted lines are intersected to form a final polyline, thus leading to improved compression accuracy. An experiment is included, which shows that compared with the traditional RDP algorithm, the proposed method has smaller approximation errors, especially for larger tolerance.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第5期946-950,共5页 Journal of Xidian University
基金 国家自然科学基金资助(40401052)
关键词 数据压缩 RDP算法 总体最小二乘 data compression Ramer-Douglas-Peucker algorithm total least squares
作者简介 杨云(1969-),女,西安测绘研究所高级工程师,信息工程大学博士研究生,E-mail:yytoall@126.com
  • 相关文献

参考文献11

  • 1杨得志,王杰臣,闾国年.矢量数据压缩的Douglas-Peucker算法的实现与改进[J].测绘通报,2002(7):18-22. 被引量:66
  • 2Ramer U, An Iterative Procedure for the Polygonal Approximation of Plane Curves [J]. Computer Graphics and Image Processing, 1972, (1): 244-256.
  • 3Douglas D H, Peucker T K. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature [J]. The Canadian Cartographer, 1973, 10 (2): 112-122.
  • 4Visvalingham M, Whyatt J. Line Generalization by Repeated Elimination of Points [J]. The Cartographic Journal, 1993, 30 (1): 46-51.
  • 5Li Z L, OpenShaw S. Algorithms for Automated Line Generalization Based on a Natural Principle of Objective Generalization[J]. International Journal of Geographical Information Systems, 1992, 6 (5) : 373-389.
  • 6Balboa J L G, Lopez F J A. Frequency Filtering of Linear Elements by Means of Wavelets - a Method and Example[J]. The Cartographic Journal, 2000, 37 (1) : 39-S0.
  • 7吴凡.基于小波分析的线状特征数据无级表达[J].武汉大学学报(信息科学版),2004,29(6):488-491. 被引量:18
  • 8Muller J C. Fractal Dimension and Inconsistencies in Cartographic Line Representation[J]. The Cartographic Journal, 1986, 23(4): 123-130.
  • 9武芳,邓红艳.基于遗传算法的线要素自动化简模型[J].测绘学报,2003,32(4):349-355. 被引量:32
  • 10Jaafar J. Line Generalization: Least Square with Double Tolerance [C]//Third International Conference on Management Information Systems Incorporating GIS & Remote Sensing. Southampton: Wessex Institute of Technology, 2002: 135-144.

二级参考文献5

共引文献113

同被引文献79

引证文献13

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部