期刊文献+

基于改进PSO的规则提取方法 被引量:3

Rules Extraction Method Based on Modified PSO
在线阅读 下载PDF
导出
摘要 为解决飞行动作识别规则的自动提取问题,提出一种基于改进粒子群优化算法的飞行动作规则提取方法。在对关键飞行参数特征量进行符号化的基础上,利用基于改进的动态惯性权重策略的离散二进制粒子群算法对符号化的各飞行参数特征量进行组合寻优,以找到能够完全表达飞行动作的识别规则。仿真实验表明,应用该方法得到的飞行动作识别规则简洁、有效,在实践中有良好的应用前景。 In order to resolve the auto-extraction problem of flight action rules acquisition, this paper proposes a flight action recognizing method based on modified Particle Swarm Optimization(PSO). At the foundation of signed key flight parameters, it uses a discrete binary version of particle swarm algorithm based on modified dynamic inertia weight to find the optimization combination in the key flight parameters, and finds out the rule which can express the flight actions perfectly. Simulation result shows that the flight action rule found by the method is concise and available. The approach is quite promising.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第20期221-223,共3页 Computer Engineering
关键词 粒子群优化算法 惯性权重 飞行动作识别 规则提取 Particle Swarm Optimization(PSO) inertia weight flight action recognition rules extraction
作者简介 王新亮(1980-),男,硕士研究生,主研方向:飞机健康状态监控.E-mail:wxl1226@yahoo.com.cn 倪世宏,教授、博士生导师.
  • 相关文献

参考文献4

  • 1李玉峰,倪世宏,张宗麟.一种基于模糊Kohonen网络的飞行数据智能处理方法[J].系统工程与电子技术,2002,24(9):53-55. 被引量:8
  • 2Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc. of IEEE International Conference on Neural Networks. [S. l.]: IEEE Press, 1995.
  • 3Shi Y, Eberhart R C. Empirical Study of Particle Swarm Optimization[C]//Proc. of the IEEE Congress on Evolutionary Computation. Piscataway, USA: IEEE Press, 1999.
  • 4Kennedy J, Eberhart R C. A Discrete Binary Version of the Particle Swarm Algorithm[C]//Proc. of the International Conference on Systems, Man, and Cybernetics. New York, USA: IEEE Press, 1997.

二级参考文献5

共引文献7

同被引文献32

  • 1谢川,倪世宏,张宗麟,王彦鸿.一种基于知识的特技飞行动作快速识别方法[J].计算机工程,2004,30(12):116-118. 被引量:16
  • 2倪世宏 ,史忠科 ,谢川 ,王彦鸿 .军用战机机动飞行动作识别知识库的建立[J].计算机仿真,2005,22(4):23-26. 被引量:40
  • 3胡飞,徐浩军,曹登高.遗传算法在产生式规则获取中的应用[J].电光与控制,2006,13(3):87-90. 被引量:5
  • 4EUSUFF M M, LANSEY K E. Optimization of water distribution network design using the shuffled frog leaping algorithm [ J]. Water Resources Planning and Management, 2003, 129(3): 210 - 225.
  • 5ELBEHAIRY H, ELBELTAGI E. Comparison of two evolutionary algorithms for optimization of bridge deck repairs [ J]. Computer-Aided Civil and Infrastructure Engineering, 2006, 21(8): 561- 572.
  • 6AMIRI B, FATHIAN M, MAROOSI A. Application of shuffled frog- leaping algorithm on clustering [ J]. The International Journal of Advanced Manufacturing Technology, 2009, 45(1/2): 199-209.
  • 7ZHANG XUNCAI, HU XUEMEI, CUI GUANGZHAO. An improved shuffled frog leaping algorithm with cognitive behavior [C]// Proceedings of the 7th World Congress on Intelligent Control and Automation. Washington, DC: IEEE Computer Society, 2008: 6197- 6202.
  • 8ELBELTAGI E, HEGAZY T, GRIERSON D. A modified shuffled frog-leaping optimization algorithm applications to project management [ J]. Structure and Infrastructure Engineering, 2007, 3 ( 1 ) : 53 - 60.
  • 9毛红保,张凤鸣,冯卉.基于奇异值分解的飞行动作评价方法研究[J].计算机工程与应用,2008,44(32):240-242. 被引量:12
  • 10王德兴,胡学钢,刘晓平,黄冬梅.基于扩展概念格的属性归纳算法[J].上海交通大学学报,2009,43(3):476-479. 被引量:1

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部