期刊文献+

直接三角形和矩形NAM的灰度图像表示算法 被引量:2

A gray image representation algorithm by using the direct triangle and rectangle non-symmetry and anti-packing model
在线阅读 下载PDF
导出
摘要 分析了三角形非对称递布局模型(NAM)、矩形NAM和线性四元树表示算法,借助于三角形和矩形布局问题的思想,提出了一种直接三角形和矩形NAM(TRNAM)的灰度图像表示算法.通过描述三角形和矩形子模式的存储结构,给出了该算法数据量的理论分析.实验结果表明:与直接三角形NAM表示、直接矩形NAM表示和线性四元树表示算法相比,直接三角形和矩形NAM表示算法能够更有效地减少子模式数(节点数)和数据存储空间,是灰度图像模式的一种更优的表示方法,这种表示方法在降低存储空间、加快传输速度、提高模式匹配效率等方面具有理论参考意义和实际应用价值. A gray image representation algorithm by using the direct triangle and rectangle non-symmetry and anti-packing model (NAM) is proposed after the algorithms of the direct triangle NAM (TNAM), the direct rectangle NAM (RNAM), and the linear quadtree were analyzed. The storage structures of the triangle and the rectangle are described and the total data amount of the proposed al- gorithm is analyzed. The experimental results show that the proposed algorithm can greatly reduce the numbers of subpatterns or nodes and simultaneously save the storage room much more effectively than the algorithms of the popular linear quadtree, the TNAM, and the RNAM. Therefore, the proposed algorithm is a better method to represent the gray image pattern. The method is valuable for the theoretical research and potential practical values such as reducing storage room, increasing transmission speed, improving pattern match efficiency and so on.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第9期1-4,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家高技术研究发展计划资助项目(2006AA04Z211)
关键词 图像表示 灰度图像 非对称逆布局模型 图像复杂度 线性四元树 image representation gray image non-symmetry and anti-packing model image complex-ity linear quadtree
作者简介 郑运平(1979-),男,博士,E—mail:zypdragon@163.com.
  • 相关文献

参考文献13

  • 1Wang S J, Kuo L C, Jong H H, etal. Representing images using points on image surfaces [J]. IEEE Trans Image Process, 2005, 14(8): 1 043-1 056.
  • 2Hong W, John W, Huang K, et al. Multiscale hybrid linear models for lossy image representation[J]. IEEE Trans Image Process, 2006, 15 (12):3 655-3 671.
  • 3Naik S K, Murthy C A. Distinct multicolored region descriptors for object recognition [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2007, 29 (7): 1 291-1 296.
  • 4Cohen D L. Multiple contour finding and perceptual grouping using minimal paths[J]. Journal of Mathematical Imaging and Vision, 2001, 14(3): 225-236.
  • 5刘勇奎,魏巍,郭禾.压缩链码的研究[J].计算机学报,2007,30(2):281-287. 被引量:16
  • 6Meyr H, Rosdolsky G H, Huang T S. Optimum run length codes[J]. IEEE Trans on Communications, 1974, 22(6): 826-835.
  • 7Vasic B, Pedagani K. Run-length-limited low-density parity check codes based on deliberate error insertion [J]. IEEE Trans Magnetics, 2004, 40(3):1 738- 1 743.
  • 8Peel C M, Pegram S, Mcmahon A T. Global analysis of runs of annual precipitation and runoff equal to or below the median: run length[J]. International Journal of Climatology, 2004, 24(7): 807-822.
  • 9Nagy Z, Zeger K. Bit-stuffing algorithms and analysis for run-length constrained channels in two and three dimensions[J]. IEEE Trans Information Theory, 2004, 50(12): 3 146-3 169.
  • 10Gargantini I. An effective way to represent quadtrees[J]. Comm ACM, 1982, 25(12): 905- 910.

二级参考文献14

  • 1Liu Zeyi~1, Sun Ziqiang~ 2,3 , Xu Ling~2 & Peng Xiang~ 4,5 1. Dept. of Mathematics of Science Coll., Shenzhen Univ., Shenzhen 518060, P.R. China,2. Dept. of Mathematics of Science Coll., Tianjin Univ., Tianjin 300072, P.R. Ch ina,3.Tianjin Foreign Studies Univ., Tianjin 300204, P.R. China,4. Inst. of Optoelectronics, Shenzhen Univ., Shenzhen 518060, P.R. China,5. National Lab of Precision Measurement Technology and Instrumentation, Tianjin 300072, P.R. China.Contour representation based on wedgelet[J].Journal of Systems Engineering and Electronics,2006,17(2):251-257. 被引量:2
  • 2冀俊峰,李胜,刘学慧,吴恩华.细节高度复杂表面模型的视点相关渐进传输[J].软件学报,2006,17(10):2192-2198. 被引量:2
  • 3Shih F Y,Wong W T.A one-pass algorithm for local symmetry of contours from chain code.Pattern Recognition,1999,32(7):1203-1210
  • 4Zingaretti P,Gasparroni M,Vecci L.Fast chain coding of region boundaries.IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(4):407-414
  • 5Koplowitz J,Plante S.Corner detection of chain code curves.Pattern Recognition,1995,28(6):843-852
  • 6Yuan J,Suen C Y.An optimal O(n) algorithm for identifying line segments from a sequence of chain codes.Pattern Recognition,1995,28(5):635-645
  • 7Freeman H.On the encoding of arbitrary geometric configurations.IRE Transactions on Electronic Computers,1961,10:260-268
  • 8Bribiesca E.A geometric structure for two-dimensional shapes and three-dimensional surfaces.Pattern Recognition,1992,25(5):483-496
  • 9Bribiesca E.A new chain code.Pattern Recognition,1999,32(2):235-251
  • 10Bribiesca E,Guzman A.How to describe pure form and howto measure differences in shapes using shape numbers.Pattern Recognition,1980,12(1):101-112

共引文献43

同被引文献17

  • 1张凤林,刘思峰.LZW*:一个改进的LZW数据压缩算法[J].小型微型计算机系统,2006,27(10):1897-1899. 被引量:19
  • 2Stauffer C, Grimson E. Adaptive background mixture models for real time tracking[C] // Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins: IEEE, 1999: 246-252.
  • 3Yang Jian, Zhang David, Yang Jingyu. Two-dimensional PCA: a new approach to appearance-based face representation and recognition[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2004 ( 1 ) : 111-117.
  • 4Amir A, Landau M G, Sokol D. Inplace run-ength 2D compressed search[J]. Theoretical Computer Science, 2001, 290(1): 1 161-1 181.
  • 5Keevash P, Sudakov B. Packing triangles in a graph and its complement[J]. Journal of Graph Theory, 2004, 47(1): 201-216.
  • 6Yap P, Jiang X, Kot A C. Two-dimensional polar harmonic transforms for invariant image represent -ation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1259-1270.
  • 7Distasi R, Nappi M, Vitulano S. Image compression by B-tree triangular coding[J]. IEEE Transactions on Communications, 1997, 45(9): 1095-1100.
  • 8Jonge W D, Scheuermann P, Schijf A. S+-trees: an efficient structure for the representation of large pictures[J]. Computer Vision and Image Understanding, 1994, 59(3): 265-280.
  • 9Foley J D, Dam A V, Feiner S K, et al. Computer graphics, principle, and practice[M]. 2nd Edition. Massachusetts, Reading: Addision-Wesley, 1990.
  • 10Chung K L, Wu J G. Improved image compression using S-tree and shading approach[J]. IEEE Transactions on Communications, 2000, 48(5): 748-751.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部