期刊文献+

基于提升小波分解曲波变换的雷达影像消噪法 被引量:2

Radar Image De-noise Method Based on Lifting Curvelet Transformation of Wavelet Decomposition
在线阅读 下载PDF
导出
摘要 利用提升法对传统小波进行提升,将提升小波对雷达影像进行分解,形成子带影像,再将子带影像进行脊波变换,并对变换结果进行消噪处理,然后进行脊波逆变换和提升小波重构,得到新的雷达影像。试验结果表明:基于提升小波分解的曲波变换比传统小波分解的曲波变换对雷达影像消噪效果好,同时与传统的均值滤波相比效果更好。 A new de-noises way is provided. Traditional wavelet is promoted by lifting scheme, lifting wavelet is used to decompose radar image into sub-band images, and then sub-band images are transformed by ridgelet to new sub-band images. Then, new-band images are de-noised and reconstructed by ridgelet and lifting wavelet to new image. Experimental results demonstrate that curvelet transformation algorithm based on lifting wavelet decomposition has a better efficiency than the curvelet transform algorithm of traditional wavelets decomposition in radar image de-noising. Algorithm of lifting wavelet decomposition is better than traditional average value filter in radar image de-noising.
出处 《地球科学与环境学报》 CAS 2008年第3期326-330,共5页 Journal of Earth Sciences and Environment
基金 国家科技支撑计划项目(2006BAB07B01-02)
关键词 曲波变换 提升小波 消噪 雷达影像 eurvelet transformation lifting wavelet de-noise radar image
作者简介 田养军(1964-),男,陕西蓝田人,讲师,从事遥感应用研究。E-mail:yangjunt@chd.edu.cn
  • 相关文献

参考文献8

二级参考文献39

  • 1刘斌,彭嘉雄.具有紧支撑正交非张量积小波的图像融合[J].光学学报,2004,24(9):1214-1218. 被引量:16
  • 2李明,吴艳,吴顺君.彩色纹理分析中的多特征数据融合方法[J].光学学报,2004,24(12):1617-1622. 被引量:5
  • 3韩玲,吴汉宁,杜子涛.多源遥感影像数据融合方法在地学中的应用[J].地球科学与环境学报,2005,27(3):78-81. 被引量:21
  • 4[2]李德仁,周月琴,金为铣.摄影测量与遥感概论[M].北京:测绘出版社,2003
  • 5[2]Broussard R P,Rogers S K,Oxley M E.Physiologically Motive Image Fusion for Object Detection Using a Pulse Coupled Neural Network[J].IEEE Trans:Neural Networks,1999,10(3):621-625.
  • 6[6]Tupin F,Bloch I,Maiter H.A First Step Toward Automatic Interpretation of SAR Images Using Evidential Fusion of Several Structure Detectors[J].IEEE Trans:Geosciences Remote Sensing,1999,37(3):1 327-1 343.
  • 7[7][日]谷口庆治.数字图像处理[M].朱虹,译.北京,科学出版社,2002.
  • 8Do M N, Vetterli M. Contourlet: a computational framework for directional multiresolution image representation[R]. Submitted to IEEE Trans. on Image Processing, 2003, http:∥www.ifp.uiuc.edu/ minhdo/publications.
  • 9Donoho D L. Wedgelets: nearly-minimax estimation of edges[J]. Ann. Statist., 1999;27:859-897.
  • 10Pennec E L, Mallat S. Image compression with geometrical wavelets[A]. In Proc. of ICIP'2000[C], Vancouver,Canada, September 2000;661-664.

共引文献129

同被引文献52

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部