期刊文献+

混合智能算法在彩色图像分割中的应用研究 被引量:3

Study on hybrid intelligent algorithms for color image segmentation
在线阅读 下载PDF
导出
摘要 对颜色空间做了全面地介绍,对当前传统的彩色图像分割技术进行了较为系统的论述,通过比较发现传统的单一分割算法在彩色图像分割中都不可避免地存在一定的不足与缺陷。而以神经网络、遗传算法和蚁群算法等智能算法进行图像分割时,由于从不同侧面反映了人类视觉感知的智能性、并行性,取得了较好的效果,推动了图像分割向智能化方向发展,但其在理论和实践上都没有达到让人满意的程度。因此,可以根据实际情况组合不同的算法,分层次地分割图像,寻找符合人类视觉感知特性的有效的彩色图像分割混合智能算法,从而弥补单一算法对彩色图像分割的不足。 Common color space is introduced, and the current traditional color image segmentation techniques are introuduced. Comparing with their respective advantages and disadvantages, it is found that the traditional single arithmetic ofcolor image segmentation inevitably has some deficiencies and defects. Image segmentation combined with artificial neural network or genetic algorithm is a new research field with rapid development in recent years. The methods have better effect, in that they have human-like intelligence and concurrency, Although many works have been done in this area, we still have a long way to get a satisfactory result. So, we can combine different intelligent algorithms according to the actual situation or have a hierarchical division of image segmentation. By means of these, more effective segmentation algorithms are found in accord with human visual and perceptive traits, and it can make up for existing deficiencies and shortcomings.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第16期4260-4262,F0003,共4页 Computer Engineering and Design
关键词 彩色图像分割 混合智能算法 颜色空间 神经网络 遗传算法 蚁群算法 color image segmentation hybrid intelligent computing color space neural networks genetic algorithm ant colony algorithm
作者简介 张学习(1978-),男,安徽萧县人,博士研究生,讲师,研究方向为智能控制和信息处理技术,E-mail:zxxnet_2@163.com 杨宜民(1945-),男,广东潮汕人,教授,博士生导师,研究方向为智能控制和人工智能。
  • 相关文献

参考文献12

  • 1Cheng H D,Jiang X H,Wang Jingli.Color image segmentation bazed on homogram threzholding and region merging[J].Pattern Recognition,2002,35(2):373-393.
  • 2龚声蓉.数字图像处理与分析[M].北京:清华大学出版社,2005.
  • 3Marko Tkalcic,Jurij F Tasic,Colour spaces-perceptual,historical and applicational background [C]. Ljubljana, Slovenia: EUROCON,2003:304-308.
  • 4日下秀夫.彩色图像工程[M].北京:科学出版社,2005.
  • 5Cheng H D,Jiang X H,Sun Y, et al.Color image segmentation: Advances and prospects[J].Pattern Recognition,2001,34(12):2259- 2281.
  • 6阮秋绮.数字图像处理学[M].北京:电子工业出版社,2001..
  • 7耿伯英,陆建峰,杨静宇.基于模糊主色调的彩色图像分割及道路检测[J].南京理工大学学报,2000,24(4):353-358. 被引量:7
  • 8Ong S H,Yeo N C,Lee K H,et al.Segmentation of color image using a two-stage self-organizing network[J].Image and Vision Computing,2002,20(4):279-289.
  • 9Yang J-F, Hao S-S,Chung P-C.Color image segmentation using fuzzy c-means and eigenspace projuetions[J].Signal Processing, 2002,82(3):461-472.
  • 10常发亮,刘静,乔谊正.基于遗传算法的彩色图像二维熵多阈值自适应分割[J].控制与决策,2005,20(6):674-678. 被引量:17

二级参考文献19

  • 1王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 2[美]Z米凯利维茨著 周家驹 何险峰译.演化程序--遗传算法和数据编码的结合[M].北京:科学出版社,2000..
  • 3王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 4[5]V. Tandon. NC End Milling Opimization Using Evolutionary Computation [ J ]. International Journal of Machine Tools and Manufacture, 2001,42: 595~ 605.
  • 5[7]F Zhang, D Xue. Optimal Concurrent Design Based upon Distributed Product Development Life-cycle Modeling[J]. Robotics and Computer Integrated Manufacturing, 2001, 17: 469~ 486.
  • 6[8]A R Cockshott, B E Hartman. Improving the Fermentation Medium for Echinocandin B Production Part Ⅱ: Particle Swarm Optimization[ J ]. Process Biochemistry, 2001, 36: 661 ~ 669.
  • 7Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer,Vision Graphic Image Process, 1989,47 (1) : 22-32.
  • 8Shanbhag A G. Utilization of information measure as a means of image thresholding [J].Computer Vision,Graphics,Image Processing-Graphical Model and Image Processing, 1994,56(5) : 414-419.
  • 9Juliana F, Camapum W, Mark H F. Spatial-feature parametric clustering applied to motion-based segmentation in camouflage [J]. Computer Vision and Image Understanding, 2002,85 (2) : 144-157.
  • 10Constantine K, Ioannis P. Segmentation of ultrasonic images using support vector machines[J]. Pattern Recognition Letters, 2003, (24) : 715-727.

共引文献511

同被引文献30

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部