摘要
The energy barriers of thermal decarboxylation reactions of petroleum acids and catalytic decarboxylation reactions of Bronsted acid and Lewis acid were analyzed using molecular simulation technology. Compared with thermal decarboxylation reactions of petroleum acids, the decarboxylation reactions by acid catalysts were easier to occur. The decarboxylaton effect by Lewis acid was better than Bronsted acid. The mechanisms of catalytic decarboxylation over acid catalyst were also verified by experiments on a fixed bed and a fluidized bed, the experimental results showed that the rate of acid removal could reach up to 97% over the acidic catalyst at a temperature above 400℃.
The energy barriers of thermal decarboxylation reactions of petroleum acids and catalytic decar-boxylation reactions of Brnsted acid and Lewis acid were analyzed using molecular simulation technology. Compared with thermal decarboxylation reactions of petroleum acids, the decarboxylation reactions by acid catalysts were easier to occur. The decarboxylaton effect by Lewis acid was better than Brnsted acid. The mechanisms of catalytic decarboxylation over acid catalyst were also verified by experiments on a fixed bed and a fluidized bed, the experimental results showed that the rate of acid removal could reach up to 97% over the acidic catalyst at a temperature above 400 .
基金
the National Key Basic Re-search and Development Program (No. 2006CB202505).