期刊文献+

非线性动力系统的自适应显式Magnus数值方法 被引量:1

Adaptive Explicit Magnus Numerical Method for Nonlinear Dynamical Systems
在线阅读 下载PDF
导出
摘要 基于最近发展的矩阵李群上非线性微分方程的显式Magnus展式,给出了非线性动力系统的有效的数值算法,并且在数值求解过程中具有自适应的步长控制特点,可以显著地提高计算效率.最后,通过非线性动力系统典型问题Duffing方程和强刚性的Van der Pol方程以及非线性振子的Hamilton方程的数值实验来说明方法的有效性. Based on the new explicit Magnus expansion developed for nonlinear equation defined on matrix Lie group, an efficient numerical method was suggested for nonlinear dynamical system. To improve the computational efficiency, the integration step size can be controlled self adaptively. The validity and effectiveness of the method were proved by application to several nonlinear dynamical systems, including Duffmg system, Van der Pol system with strong stiflhess, and nonlinear Hamiltonian pendulum system.
出处 《应用数学和力学》 EI CSCD 北大核心 2008年第9期1009-1016,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(1063203010572119) 大连理工大学工业装备结构分析国家重点实验室开放基金资助项目
关键词 非线性动力系统 HAMILTON系统 数值方法 步长控制 nonlinear dynamical system Hamiltonian system numerical integrator step size control
作者简介 李文成(1978-),男,宁夏人,讲师,博士(E-mail:wenchengli@nwpu.edu.cn) 邓子辰(联系人,Tel:+86-29-88492157;E-mail:dweifan@nwpu.edu.cn)
  • 相关文献

参考文献11

  • 1Magnus W. On the exponential solution of differential equations for a linear operator[ J]. Commun Pure Appl Math, 1954,7(4) :649-673.
  • 2Iserles A, Nφrsett S P. On the solution of linear differential equations in Lie groups[ J] .Phil Trans Royal Society A, 1999,357(1754) :983-1020.
  • 3Halter E, Lubich C, Wanner G. Geometric Numerical Integration [ M ]. Berlin: Springer Verlag,2006.
  • 4Iserles A, Munthe-Kaas H Z, Nφrsett S P, et al.Lie group methods[J] .Acta Numerica,2000,9:215- 365.
  • 5Blanes S, Casas F, Ros J. High order optimized geometric integrators for linear differential equations[J]. BIT Numerical Mathematics, 2002,42(2) : 252-284.
  • 6Zanna A, Collocation and relaxed collocation for the Fer and the Magnus expansion[ J]. SIAM J Numer Anal, 1999,36(4) : 1145-1182.
  • 7Blanes S, Moan P C. Splitting methods for non-autonomous Hamiltonian equations[J]. J Camput Phys, 2001,170(1) : 205-230.
  • 8Zhang S, Deng Z. A simple and efficient fourth-order integrator for nonlinear dynamic system[ J]. Mech Res Commun, 2004,31(2 ) : 221-228.
  • 9Zhang S, Deng Z. Geometric integration for solving nonlinear dynamic systems based on Magnus seties and Fer expansions[ J].Progress in Natural Science, 2005,14 ( 9 ) : 19-30.
  • 10Casas F, Iserles A. Explicit Magnus expansions for nonlinear equations[ J ]. J Phys A: Math Gen, 2006,39 (19) : 5445-5462.

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部