摘要
基于育种算法的BP网络学习算法,用育种算法替代传统BP算法中的梯度下降法,使得改进后的算法具有不易陷入局部极小、泛化性能好等特点。该算法应用于径流预测的实验证明:这种算法能够明显减少迭代次数、提高收敛精度,其泛化性能也优于传统BP算法。
The BP neural networks learning algorithm based on Breeding Algorithm is proposed in this paper. Among this algorithm, breeding algorithm has substituted the gradient descent method in traditional BP algorithm; this new algorithm does not easily trapped local minima and has better generalization. The algorithm is applied to neural network's training in runoff forecasting. The results show: this algorithm can reduce number of training and error obviously; it has better generalization than traditional BP algorithm.
出处
《水力发电》
北大核心
2008年第8期12-13,42,共3页
Water Power
基金
国家自然科学基金重点项目(50539140)
国家自然科学基金项目(50679098)
关键词
BP网络
育种算法
径流预测
BP neural networks
breeding algorithm
runoff forecasting
作者简介
王羽(1975-),男,四川成都人,硕士,工程师,从事电力营销工作.