期刊文献+

一种基于WENO格式的一维溃坝水流数值模拟研究 被引量:2

The Research of One-Dimensional Dam-Break Water Flow Numerical Simulation Based on WENO Schemes
在线阅读 下载PDF
导出
摘要 采用一维Saint-Venant方程组,应用WENO格式和Runge-Kutta时间离散的思想,进行溃坝水流的数值模拟,得出了水位和流速的沿程分布,并与理论解比较,发现数值解在间断波附近没有出现数值振荡,水位和流速数值解与理论解吻合较好,表明WENO格式是一种进行溃坝水流模拟的非常理想的差分格式. The WENO scheme and the Runge-Kutta time discretization method are applied to the one-dimensional saint-venant water equations for numerical simulation of dam-break flood water; and water depth and velocity along the distance distribution are obtained. It can be found that the numerical resolutions have no numerical oscillation at the intermittent compared with the theoretical,and water depth and velocity computed are be in good agreement with the analytical solutions,which indicate that the model with high resolutions established using WENO scheme is able to simulate the evaluation process of the dam-break waves.
出处 《河南科学》 2008年第8期952-954,共3页 Henan Science
基金 甘肃省自然科学基金(3ZS062-B25-038)
关键词 WENO格式 Runge.Kutta时间离散 数值计算 溃坝 WENO schemes Runge-Kutta time discretization numerical simulation dam-break
作者简介 樊新建(1979-),男,江西九江人,讲师,主要从事水力学及水环境研究.
  • 相关文献

参考文献8

  • 1Rao V S, Latha G. A slope modification method for shallow water equations[J]. Int J Numer Methods in Fluids, 1992, 14: 189-196.
  • 2Nujic M. Efficient implementation of non-oscillatory schemes for the computation of free-surface flows[J]. J Hydr Res, Delft,The Netherlands, 1995,33 (1) : 101-111.
  • 3Savic L J, Holly F M. Dambreak food waves computed by modified gonunov method [J]. J Hydr, Res, Delft, The Netherlands, 1993, 31 (2) : 187-204.
  • 4Garcia-Navarro P, Alcrudo F, Saviron J M. 1-D open-channel flow simulation using TVD-MaCormack Scheme [J]. J Hydr Engrg, ASCE, 1992, 118 (10) : 1359-1372.
  • 5Harten A. High resolution schemes for hyperbolic conservation laws [J]. J Comp Phys, 1983,49: 357-393.
  • 6Senka Vuknovic, Luka Sopta. ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations [J]. J Comp Phys, 2002, 179 (2) : 593-621.
  • 7Liu Xudong, Osher Stanley, Chan Tony. Weighted rssentially nonoscillatory schemes [J]. J Comp Phy, 1994, 115:200-212.
  • 8Roe P L. Approximate riemann solvers, parameter vectors, and difference schemes [J]. J Comput Phys, 1981,43:357-372.

同被引文献22

  • 1张永祥,陈景秋,韦春霞.一维溃坝洪水波的数值模拟-时空守恒法[J].重庆大学学报(自然科学版),2005,28(5):136-138. 被引量:8
  • 2郭永涛,魏文礼.基于ENO格式的一维溃坝水流数值模拟[J].西安理工大学学报,2005,21(3):293-295. 被引量:5
  • 3Liang D F, Roger A, Lin B L. Comparison between TVD-MaeCormack and ADl-type solvers of the shallow water equations [ J ]. Advances in Water Resources, 2006, 29(12) : 1833 - 1845.
  • 4Senka V, Luka S. ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations [ J ]. Journal of Computational Physics, 2002, 179 ( 2 ) : 593 -621.
  • 5Liu X D, Osher S, Chan T. Weighted essentially nonoscillatory schemes [ J ]. Journal of Computational Physics, 1994, 115: 200 -212.
  • 6Capdeville G A. Central weno scheme for solving hyperbolic conservation laws on non- uniform meshes [ J ]. Journal of Computational Physics, 2008, 227(5 ) : 2977 - 3014.
  • 7Hu J, Guo Sh G. Solution to euler equations by high resolution upwind compaet scheme based on flux splitting[ J]. Internet J Numer Meth Fluids,2008,56 ( 11 ) :2139 -2150.
  • 8Alberto C, Annunziato S, Michael D, et at. Well-balanced highorder centered schemes for non-conservative hyperbolic systems. Applications in Water Resources, 2009, 32 (6) : 834 - 844.
  • 9Alberto C, Michael D, Annunziato S, et al. Well-balanced high- order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed. Advances in Water Resources, 2010, 33 (3) : 291 -303.
  • 10Roe P L. Approximate Riemann solyers, parameter vectors, and difference schemes [ J]. Journal of Computational Physics, 1981, 43:357 - 372.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部