期刊文献+

基于小波变换分析的微弱信号检测研究 被引量:8

Weak Signal Detection Based on Wavelet Analysis
原文传递
导出
摘要 文章针对在检测农田水势微弱信息时传统的微弱信号检测算法或原理的局限性,在分析了小波变换信噪分离原理的基础上,提出了将小波分析与自适应滤波相结合的算法。通过小波分析对被检测的微弱信号的分解,为每一子带单独设计阈值,实现了从强噪声信号中提取微弱信号,并通过仿真的结果验证了本算法的可行性和可靠性,为微弱信号的检测提供了新的理论算法。 Aiming at the problems that traditional algorithm or theory is not suitable for monitoring weak signal when detecting the information of water flowincropland, and in accordance with the principle of separating noises from data by making use of wavelet analysis, a novel algorithm in combination of wavelet analysis with self-adapting filtering is proposed in the paper. The detected weak is separated by the wavelet function and threshold value of each subband is computed respectively, so that the weak signal is picked up successfully from strong noise. The simulation results has proved the feasibility and reliability of this algorithm, thus providing a novel theoretic algorithm for detecting weak signal.
作者 储健
出处 《通信技术》 2008年第8期17-19,共3页 Communications Technology
基金 国家自然科学基金:农田水势软测量技术及装置研究(60772167)
关键词 微弱信号 小波分析 自适应滤波 weak signal wavelet analysis self-adaptive filter
  • 相关文献

参考文献3

二级参考文献6

  • 1陈瑛,罗鹏飞.混沌背景下基于RBF神经网络的弱信号检测[J].雷达与对抗,2004,24(2):16-20. 被引量:4
  • 2谢红梅,俞卞章.基于神经网络预测器的混沌海杂波弱信号检测[J].现代雷达,2004,26(9):50-52. 被引量:13
  • 3Zhu Z W,Leung H.Identification of Linear Systems Driven by Chaotic Signals Using Nonlinear Prediction[J].IEEE Trans on circuitsand systems-1:Fundamental Theory and Applications,2002,49(2):170-180.
  • 4Takens F.,Detecting Strange Attraction in Turbulence.Springer-Verlag,Berlin,1981:101-120.
  • 5Wolf A,Swift J B,Swinney H L,Vastano J A.Determining Lyapunov Exponents from a Time Series[J].Physica,1985,16D:285-317.
  • 6Xu Pengcheng,Jing Zhujun.Silnikov's Orbit in Coupled Duffing's Systems[J].Chaos,Solitons and Fractals.2000,11:853-858.

共引文献7

同被引文献79

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部