摘要
模糊数学用隶属函数来刻画元素对集合属于程度的连续过渡性,将经典集合的二值逻辑{0,1}扩展为[0,1]区间内的连续值逻辑.利用综合评价方法,选用SO2、NO2、PM10作为评价因子,参照大气环境质量标准,通过分析各个污染因素的权重及属于某个级别的隶属度,对昆明市区大气环境质量进行了评价.综合评判结果表明,五华区、盘龙区、西山区、官渡区的大气质量达到Ⅱ级水平,东川区则根据置信度的差异,介于Ⅲ和Ⅱ级之间.最后,简要讨论了模糊数学的发展及研究方向.
.This paper discusses firstly the conception of fuzzy mathematics and its theory. And then, based on the conception of approach degree and weight distance, it develops an improved model for assessing the quality of Kunming City's atmospheric environment, by selecting SO2, PM10 and NO2 as evaluation factors, consulting the standards relevant to its atmospheric environment and calculating the weight and attachment grade of its atmospheric pollution factors. Some conclusions have been reached with a brief discussion of the developmental trend of fuzzy math.
出处
《中南林业科技大学学报》
CAS
CSCD
北大核心
2008年第3期139-143,共5页
Journal of Central South University of Forestry & Technology
基金
中南大学博士研究生学位论文创新选题项目(编号:1343-77208)
关键词
模糊数学
隶属函数
大气环境
综合评价
fuzzy mathematic
attaching function
atmospheric environment
comprehensive evaluation
作者简介
王颖(1975-),男,湖南桃江人,讲师,博士研究生,研究方向为非线性智能算法,三维可视化技术.