期刊文献+

基于模糊神经网络的磁共振电阻抗成像算法 被引量:1

New magnetic resonance electrical impedance tomography algorithm based on neuro-fuzzy network
在线阅读 下载PDF
导出
摘要 针对人体头部组织电导率成像问题,提出了一种新的磁共振电阻抗成像技术(MREIT)算法.该算法仅利用单方向磁感应强度信息,利用基于自适应网络的模糊推理系统(ANFIS)对测量与计算得到的磁感应强度分布间不匹配程度的目标函数进行优化,通过函数寻优得到重建的目标电导率.在球状及真实头模型上的仿真实验证明,该算法可以准确地对颅骨-大脑的电导率比值进行重建,其估计误差分别小于1.10%与0.25%;对电极位置发生偏移情况进行仿真实验,其在真实头模型上的估计误差小于0.35%.通过与同类算法的结果比较发现,对于具有多层组织、电导率各向同性且分层连续体模型的阻抗重建,ANFIS-MREIT算法具有较大的优越性. A new magnetic resonance electrical impedance tomography (MREIT) algorithm was developed to image the conductivity distribution within human head. Only one component of magnetic flux densities was utilized. The target conductivities were estimated by minimizing the dissimilarity between the measured and calculated magnetic flux densities based on adaptive neuro-fuzzy inference system (ANFIS). Single-variable simulation on the sphere and realistic-geometry model estimated the skull-to-brain conductivity ratio. The relative error (RE) between the target and the estimated conductivity distribution was less than 1.10% on the sphere model and less than 0. 25% on the realistic-geometry head model; when the electrode's excursion was concerned, the RE was less than 0.35% on the realistic-geometry head model. Simulation shows that ANFIS-MREIT outperforms other MREIT algorithms in estimating the head volume conductivities for piece-wise homogeneous head volume-conductor models.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第7期1212-1217,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(NSFC-50577055) 美国国家科学基金资助项目(NSFBES-0411898) 美国国立卫生院基金资助项目(NIHR01EB00178)
关键词 磁共振成像 磁共振电阻抗成像 有限元法 magnetic resonance imaging magnetic resonance electrical impedance tomography(MREIT) finite element method
作者简介 张孝通(1982-),男,山东济南人,博士生,从事磁共振阻抗成像方面的研究.E-mail:zhangxiaotong@zju.edu.cn 通讯联系人:朱善安,男,教授,博导.E-mail:zsa@zju.edu.cn
  • 相关文献

参考文献12

  • 1ZHANG N. Electrical impedance tomography based on current density imaging [D]. Toronto, Canada: University of Toronto, 1992.
  • 2JOY M, SCOTT G, HENKELMAN M. In vivo detection of applied electric currents by magnetic-resonance imaging [J]. Magnetic Resonance Imaging, 1989, 7 (1) : 89 - 94.
  • 3BIRGUL O, EYUBOGLU B M, IDER Y Z. Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns [J]. Physics in Medicine and Biology, 2003, 48(5):653-671.
  • 4GAO N, ZHU S A, HE B. A new magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSM-MREIT algorithm with applications to estimation of human head conductivity [J]. Physics in Medicineand Biology, 2006, 51(12) :3067 - 3083.
  • 5GAO N, ZHU S A, HE B. ductivity distribution within Estimation of electrical con the human head from mag netic flux density measurement [J]. Physics in Medicine and Biology, 2005, 50(11) :2675 - 2687.
  • 6SEO J K, YOON J R, WOO E J, et al. Reconstruction of conductivity and current density images using only one component of magnetic field measurements[J]. IEEE Transactions on Biomedical Engineering, 2003, 50 (9) :1121 - 1124.
  • 7HE B, LIAN J. Neural engineering [M]. Dordrecht/ New York: Kluwer/Plenum, 2005.
  • 8HE B, MUSHA T, OKAMOTO Y, et al. Electric dipole tracing in the brain by means of the boundary element method and its accuracy [J]. IEEE Transaetions on Biomedical Engineering, 1987, BME-34:406 - 414.
  • 9HE B, ZHANG X, ZHANG X, et al. Boundary ele ment method-based cortical potential imaging of somatosensory evoked potentials using subjects' magnetic resonance images [J]. Neuroimage, 2002, 16(3) :564 - 576.
  • 10ZHANG Y, DING L, VAN DRONGELEN W, et al. A cortical potential imaging study from simultaneous extra- and intracranial electrical recordings by means of the finite element method [J]. Neuroimage, 2006, 31(4) :1513 - 1524.

同被引文献20

  • 1闫丹丹,张孝通,朱善安,Bin He.头部组织三维核磁共振电阻抗成像算法的仿真研究[J].生物物理学报,2006,22(6):461-470. 被引量:7
  • 2Davalos RV, Otten DM, Mir LM, et al. Electrical impedance tomography for imaging tissue electroporation[J]. IEEE Trans Biomed Eng, 2004, 51(5): 761-767.
  • 3Zhang Xiao-tong, Yan Dan-dan, Zhu Shan-an, et al. Noninvasive imaging of Head-Brain conductivity profiles[J]. IEEE Eng Med Biol Mag, 2008, 27(5): 78-83.
  • 4Soleimani M, Lionheart WR. Absolute conductivity reconstruction in magnetic induction tomography using a nonlinear method [J]. IEEE Trans Med Imaging, 2006, 25(12): 1521-1530.
  • 5Xu Yuan, He Bin. Magnetoacoustic tomography with magnetic induction (MAT-MI)[J]. Phys Med Biol, 2005, 50(21): 5175-5187.
  • 6He Bin. Neural Engineering[ M ]. New York: Kluwer Academic Publishers, 2005.
  • 7Oh SH, Lee BI, Woo EJ, et al. Electrical conductivity images of biological tissue phantoms in MREIT[J]. Physiol Meas, 2005, 26(2): $279-288.
  • 8Park C, Kwon O, Woo E J, et al. Electrical conductivity imaging using gradient Bz decomposition algorithm in magnetic resonance electrical impedance tomography(MREIT)[J]. IEEE Trans Med Imaging, 2004, 23(3): 388-394.
  • 9Ider YZ, Onart S. Algebraic reconstruction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density[J]. Physiol Meas, 2004, 25(1): 281-294.
  • 10Gao Nuo, Zhu Shan-an, He Bin. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement[J]. Phys Med Biol, 2005, 50(11): 2675-2687.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部