期刊文献+

高压输电线巡检机器人在线断股检测与诊断系统 被引量:17

An On-line Broken Strand Detection and Diagnosis System for High-voltage Transmission Line Inspection Robots
在线阅读 下载PDF
导出
摘要 介绍了高压输电线自动巡检机器人实时在线断股检测与诊断系统。根据高压输电线断股引起的辐射场变化和机器人运行环境状况,选择合适的传感器,并对传感器信号调理和采集电路进行高可靠性设计。描述了检测信号分析过程。针对断股信号的非平稳性质和小波基的时频特征,选用db4小波基对断股信号进行了6层小波分解。通过引入小波能量熵的概念,较好地解决了单纯采用小波变换带来的分解信息量大、故障特征值数目多、提取需要人工干预、难以实现在线检测和诊断等问题,使其能够利用较小规模的反向传播(BP)网络就可实现对铝绞导线断股损伤的在线精确诊断。系统实验进一步表明了该断股检测和诊断系统的可行性及有效性。 A real-time on-line broken strand detection and diagnosis system is introduced for high-voltage transmission line automatic inspection robots. Based on the radiation field changes caused by the transmission line strand breaking and the operating environments of the robot, an appropriate sensor is selected with fine tuned sensor signals and highly reliable collecting circuits. Then, the signal analysis process is described in detail. Given the instable nature of broken strand signal and the time-frequency characteristics of wavelet base, the broken signal is decomposed into six level wavelets using db4 wavelet base. By introducing the concept of entropy energy wavelet, the problems caused by simply adopting wavelet transform, such as over-abundant information and eigenvalues, and hard to inspect online are solved. A small BP network can realize on-line precised diagnosis on the strand breaking problem. Experimental results show the feasibility and effectiveness of the proposed system.
出处 《电力系统自动化》 EI CSCD 北大核心 2008年第14期77-81,107,共6页 Automation of Electric Power Systems
基金 国家高技术研究发展计划(863计划)资助项目(2002AA420110-4)~~
关键词 高压输电线 小波能量熵 断股在线检测 high voltage power transmission line wavelet energy entropy on-line detection of broken strand
作者简介 周风余(1969-),男,通信作者,博士,副教授,主要研究方向:特种机器人的研究开发和利用、检测技术、计算机控制系统等。E-mail:zhoufengyu@sdu.edu.cn 李贻斌(1960-),男,教授,博士生导师,主要研究方向:机器人技术、智能控制等。 李峰(1982-),男,硕士研究生,主要研究方向:计算机控制系统。
  • 相关文献

参考文献8

二级参考文献61

  • 1谭善文,秦树人,汤宝平.小波分析突发故障中小波基的选择[J].振动.测试与诊断,2000,20(z1):98-102. 被引量:1
  • 2何正友,刘志刚,钱清泉.小波熵理论及其在电力系统中应用的可行性探讨[J].电网技术,2004,28(21):17-21. 被引量:55
  • 3Qing Shuren,Chin J Mech Eng,2000年,13卷,2期,419页
  • 4谭善文,振动、测试与诊断,2000年,20卷,增刊,98页
  • 5Qing Shuren,Chin J Mech Eng,1998年,11卷,4期,259页
  • 6Rezek IA, Roberts SJ. Stochastic Complexity Measures for Physiological Signal Analysis[J]. IEEE Trans Biomed Engin, 1998,45(9): 1186-1191.
  • 7Blanco S, Figliosa A, Quian Quiroga R et al. Time-frequency analysis of electroencephalogram series(Ⅲ): information transfer function and wavelets packets, Phys. Rev. E 57: 932-940.
  • 8Rosson OA,Blanco S,Yordanova J et al. Wavelet entropy :a new tool for analysis of short duration brain electrical signals[J]. J Neurosci Meth 2001, 105(1): 65-75.
  • 9Mallat S. A theory for multi-resolution signal decomposition: The wavelet representation. IEEE Trans. PAMI, 1989, 11(7): 674-693.
  • 10Jaensch G, Hoffmann H, Markees A. Locating defects in high voltage transmission lines [A]. Proceedings of the 1998 IEEE 8th International Conference on Transmission & Distribution Construction, Operation & Live-line Maintenance [C]. Orlando,FL USA

共引文献512

同被引文献203

引证文献17

二级引证文献205

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部