期刊文献+

一类低相关序列集的线性复杂度研究 被引量:2

On the linear span of a class of low correlation sequence family
在线阅读 下载PDF
导出
摘要 在密码系统和通信系统中使用大线性复杂度的低相关序列能有效地提高数据的安全性,设计大线性复杂度的二元低相关序列是一个重要的研究问题。使用d-齐次函数是构造低相关序列集的一种有效途径,Key方法可以确定这些序列的线性复杂度。对正偶数n和与2n/2?1互素的任意正整数r,提出了一类周期为2n-1的2n条序列组成的二元序列集S(r)。对某些适当选取的参数r,S(r)中序列的线性复杂度为n2n/2?3或n2n/2?4。参数n可以取任意正偶数,所构造的具有大线性复杂度的序列具有广泛的使用范围。 In cryptography and communication systems, application of low correlation sequences with large linear span can efficiently improve security of data, and the design of sequences with these properties was an important research problem. A useful approach to construct sequence families with low correlation was based on d-form functions, and the Key's method can determine the linear span of these sequences. For a positive even integer n and any positive integers r relatively prime to 2^n/2-1, a class of low correlation sequence families S^(r) was proposed, and each family contained 2^n- binary sequences of period 2^n- 1. For some suitable values of the parameter r, the linear span of those sequences in S^(r) was equal to n2^n/2-3, or n2^n/2-4 The constructed sequences with large linear span have a wide range of application since the parameter n can take any even integer.
出处 《通信学报》 EI CSCD 北大核心 2008年第7期75-80,共6页 Journal on Communications
基金 国家自然科学基金资助项目(60603012) 武汉市青年科技晨光计划基金资助项目(200850731340)~~
关键词 伪随机序列 线性复杂度 低相关 pseudorandom sequence linear span low correlation
作者简介 田金兵(1973-),男,湖北来凤人,硕士,海南师范大学讲师,主要研究方向为序列设计和密码学。 曾祥勇(1973-),男,湖北仙桃人,博士,湖北大学副教授、硕士生导师,主要研究方向为序列设计、密码学和编码学。 胡磊(1967-),男,湖北麻城人,博士,中国科学院研究生院信息安全国家重点实验室教授、博士生导师,主要研究方向为序列设计、椭圆曲线公钥密码、理论密码学和密码学在P2P网络等新型网络安全中的应用。
  • 相关文献

参考文献13

  • 1GONG G. New designs for signal sets with low cross correlation, balance property, and large linear span: GF(p) case[J]. IEEE Trans Inform Theory, 2002, 48(11): 2847-2867.
  • 2GOLD R. Maximal recursive sequences with 3-valued recursive cross-correlation functions[J]. IEEE Trans Inform Theory, 1968, 14(1): 154-156.
  • 3KASAMI T. Weight Distribution Formula for Some Class of Cyclic Codes[R]. Coordinated Sci Lab, Univ Illinois, Urbana, IL, 1966.
  • 4OLSEN J D, SCHOLTZ R A, WELCH L R. Bent function sequences[J]. IEEE Trans Inform Theory, 1982, 28(6): 858-864.
  • 5KASAMI T. Weight Distribution of Bose-Chaudhuri-Hocquenghem Codes[M]. NC: Univ North Carolina Press, 1969.
  • 6ZENG X Y, LIU J Q, HU L. Generalized Kasami sequences: the large set[J]. IEEE Trans Inform Theory, 2007, 53(7): 2587-2598.
  • 7KLAPPER A M. d-form sequences: families of sequences with low correlation values and large linear spans[J]. IEEE Trans Inform Theory, 1995, 41 (2): 423-431.
  • 8NO J S, KUMAR P V. A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span[J]. IEEE Trans Inform Theory, 1989, 35(2): 371-379.
  • 9ZENG X Y, HU L, LIU Q C. A family of binary sequences with optimal correlation property and large linear span[A]. Proceedings of the 2006 IEEE International Conference on Communications[C]. Istanbul, Turkey, 2006.
  • 10ZENG X Y, HU L, JIANG W F. A family of binary sequences with 4-valued optimal out-of-phase correlation and large linear span[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2007, E89-A(7): 2029-2035.

二级参考文献15

  • 1Simon M K, Omura J K, Scholtz R A, Levitt B K. Spread Spectrum Communications Handbook. New York: McGraw- Hill Inc, , 1994
  • 2Gold R, Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Transactions on Information Theory, 1968, 14(1): 154-156
  • 3Kasami T. Weight distribution of gose-Chaudhuri-Hocquenghem codes//Bose R C, Dowling T A, Proceedings of the Combinatorial Mathematics and Its Applications. Chapel Hill, NC: University of North Carolina Press, 1969: 335- 357
  • 4Olsen J D, Schohz R A, Welch L R, Bent function sequences, IEEE Transactions on Information Theory, 1982, 28(6) : 858-864
  • 5Klapper A, d-form sequences: Families of sequences with low correlation values and large linear spans, IEEE Transactions on Information Theory, 1995, 41(2): 423-431
  • 6No J S, Kumar P V. A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span. IEEE Transactions on Information Theory, 1989, 35(2):371-379
  • 7Zeng X Y, Hu L, Liu Q C, Zhu Y H. Binary sequences with optimal correlations and large linear span//Proceedings of the IEEE International Conference on Communications. Istanbul, Turkey, 2006:385-390
  • 8Zeng X Y, Hu L, Jiang W F. A family of binary sequences with 4-valued optimal out-of-phase correlation and large linear span. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2006, E89-A (7) : 2029-2035
  • 9Lidl R, Niederreiter H. Introduction to Finite Fields and Their Applications. Cambridge: Cambridge University Press, 1994
  • 10Niho Y, Multivalued cross-correlation functions between two maximal linear recursive sequences [Ph. D. dissertation]. University of Southern California, Los Angeles, USA, 1972

共引文献3

同被引文献25

  • 1BrualdiRA.组合数学[M].冯舜玺,罗平,裴伟东,译.北京:机械工业出版社,2001.144-146.
  • 2GOLD R. Maximal recursive sequences with 3-valued recursive cross-correlation functions[J]. IEEE Trans Information Theory,1968 , 14 (1): 154-156.
  • 3KASAMI T. Weight distribution of Bose-Chaudhuri- Hocquenghem Codes Combinatorial Mathematics and Its Applications[M]. Chapel Hill, NC:Univ. North Carolina Press,1969.
  • 4ZENG X, LIU J Q, HU L. Generalized Kasami sequences: the large set[J]. IEEE Trans Inform Theory, 2007, 53(7): 2587-2598.
  • 5KASAMI T. Weight Distribution Formula for Some Class of Cyclic Codes[R]. Coordinated Sci Lab, Univ Illinois, Urbana, IL, 1969.
  • 6OLSEB J D, SCHOLTZ R A, WELCH L R. Bent function seque nces[J]. IEEE Trans Information Theory,1982,28 (6): 858-864.
  • 7NO J S , KUMAR P V. A new family of binary pseudo- random sequences having optimal periodic correlation properties and large linear span[J]. IEEE Trans Inform Theory, 1989, 35(2): 371-379.
  • 8ZENG X, HU L, LIU J Q, et al. On the linear span of a binary sequence family with optimal correlation properties[J]. IEICE Trans Fundamentals, 2008, 91 (2): 664-672.
  • 9KLAPPER A. d-form sequences: families of sequences with low correlation values and large linear spans[J]. IEEE Trans Inform. Theory, 1995, 41(2): 423-431.
  • 10ZENG X, HU L and JIANG W. A family of binary sequences with 4-valued optimal out-of-phase correlation and large linear span[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2007, 89(7): 2029-2035.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部