期刊文献+

Upper Bound and Lower Bound Estimate of Monotone Increasing Fractal Function

Upper Bound and Lower Bound Estimate of Monotone Increasing Fractal Function
在线阅读 下载PDF
导出
摘要 Mass distribution principle is one of important tools in studying Hausdorff dimension and Hausdorff measure. In this paper we will give a numerical approximate method of upper bound and lower bound of mass distribution function f(x)(it is a monotone increasing fractal function) and its some applications.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第2期188-194,共7页 数学季刊(英文版)
基金 Foundation item: Supported by the Youth Science Foundation of Henan Normal University(521103)
关键词 FRACTAL mass distribution function iterated function system piecewise anti- Bezier curve 单调递增分形函数 上界 下界 估计
作者简介 Biography: MA Guan-zhong(1975-), male, native of Xiangcheng, Henan, a lecturer of Henan Normal University, M.S.D., engages in fractal theory with application and approximation theory with applications.
  • 相关文献

参考文献5

  • 1FALCONER K J. Fractal Geometry: Mathematical Foudation and Application[M]. New York: John Miley and Son, 1990.
  • 2ZHOU Zuo-ling, WU Min. The hausdorff measure of a sierpinski carpet[J]. Science in China, 1999, 29(2): 138-144.
  • 3WANG Xing-hua. Estimate and conjecture about the hausdorff measure of sierpinski gasket[J]. Advance in Natrual Science, 1999, 9(6): 488-493.
  • 4CUI Zhen-wen, MA Guan-zhong. The hausdorff measure of a sierpinski gasket[J]. Journal of Henan Normal University(Natrual Science), 2001, 29(2): 93-94.
  • 5WU Min. The hasdorff measure of some sierpinski carpet[J]. Chaos, Solitions and Fractals, 2005, 24: 717- 731.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部