期刊文献+

基于免疫克隆量子算法的多用户检测器 被引量:3

Multiuser Detector Based on Immune Clonal Quantum Algorithm
在线阅读 下载PDF
导出
摘要 为了解决CDMA系统最佳多用户检测的高计算复杂度问题,基于免疫克隆选择理论和新的遗传量子算法,该文提出了免疫克隆量子算法。该算法把根据神经网络制作的疫苗接种到克隆量子算法的每一代中,通过接种疫苗到CQA中,可以加快CQA的收敛速度减少计算复杂度。另外,CQA所提供的好的初值可以改善疫苗的性能,接种的疫苗还改善了CQA的性能,文中给出了在免疫克隆量子算法中使用随机神经网络制作疫苗的统一理论框架结构。仿真结果证明了该方法不仅能够快速收敛到全局最优解,并且无论抗多址干扰能力和抗远近效应能力都优于传统检测器和一些应用以前智能计算算法的多用户检测器。 Based on the immune clonal selection theory and the novel genetic quantum algorithm, an Immune Clonal Quantum Algorithm (ICQA) is proposed to solve high complexity of optimum multiuser detection in code division multiple access systems. Using this algorithm, the vaccine based on Hopfield neural network is inoculated into the Clonal Quantum Algorithm (CQA) to improve further the fitness of the population at each generation. Such a hybridization of the CQA with the stochastic Hopfield neural network reduces its computational complexity by providing faster convergence. In addition, a better initial data estimation supplied by the CQA improves the performance of the vaccine, and the inoculated vaccine improves the performance of the CQA. The uniform theoretic framework of the making vaccine based on the stochastic Hopfield neural network is presented. Simulation results show that the proposed detector not only can achieves the global optimization value in fast convergence rate, but also is obviously superior to the conventional detector and the multiuser detectors based on previous intelligent algorithms in cancellation of the multiple access interference and the near-far effect.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第7期1566-1570,共5页 Journal of Electronics & Information Technology
基金 哈尔滨市科学研究基金(2005AFXXJ033)资助课题
关键词 多用户检测 遗传量子算法 HOPFIELD神经网络 克隆选择算法 免疫算法 Multiuser detection Genetic quantum algorithm Hopfield neural network Clonal selection algorithm Immune algorithm
作者简介 高洪元:男,1977年生,讲师,研究方向为智能计算和通信信号处理. 刁鸣:男,1960年生,教授,博士生导师,主要研究方向为宽带信号检测、处理与识别及空间谱估计理论研究. 赵忠凯:男,1979年生,讲师,研究方向为宽带信号检测与处理.
  • 相关文献

参考文献8

  • 1Zhang J H, Huai J P, and Xiao R Y, et al.. Resource management in the next generation DS-CDMA cellular networks[J]. IEEE Communications Magazine, 2004, 11(4):52-58.
  • 2Ergun C and Hacioglu K. Multiuser detection using a genetic algorithm in CDMA communications systems[J]. IEEE Trans. on Commun, 2000, 48(8): 1374-1383.
  • 3杨红孺,高洪元,庞伟正,张中兆.基于离散粒子群优化算法的多用户检测器[J].哈尔滨工业大学学报,2005,37(9):1303-1306. 被引量:21
  • 4Verdu S. Minimum probability of error for asynchronous Gaussian multiple-access channels[J]. IEEE Trans. on Info Theory, 1986, 32(1): 85-96.
  • 5Han K H and Kim J H. Genetic quantum algorithm and its application to combinatorial optimization problem[A]. Proceedings of the 2000 IEEE International Conference on Evolutionary Computation[C].California, CA, USA: IEEE Press, 2000: 1354-1360.
  • 6Manolakos E S. Hopfield neural network implementation of the optimal CDMA multiuser detector[J]. IEEE Transactions on Neural Networks, 1996, 7(1): 131-141.
  • 7De Castro L N and Von Zuben F J. The clonal selection algorithm with engineering application[A]. Genetic and evolutionary computation conference [C]. Las vegas, USA, 2000: 36-37.
  • 8王永刚,焦李成.基于随机Hopfield神经网络的最优多用户检测器[J].电子学报,2004,32(10):1630-1634. 被引量:11

二级参考文献21

  • 1VERDU S. Minimum probability of error for asynchronous Gaussian multiple - access channels [ J ]. IEEE Trans Info Theory, 1986,32 ( 1 ) :85 - 96.
  • 2ERGUN C, HACIOGLU K. Multiuser detection using a genetic algorithm in CDMA communications systems [ J ].IEEE Trans Commun,2000,48 (8) : 1374 - 1383.
  • 3ABEDI S,TAFAZOLLI R. Genetically modified multiuser detection for code division multiple access systems [ J ].IEEE JSAC. 2002,20 (2) :463 - 473.
  • 4LIM H S,书馆 RAO M V, TAN A WC, et al. Muhiuser Detection for DS - CDMA systems using evolutionary programming [ J ]. IEEE Communications Letters, 2003,7(3) :101 - 103.
  • 5KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm optimization algorithm [ A ]. Proceedings of the World Multiconference on Systemcs, Cybernetics and Informatics [ C ]. Piscataway, NJ : IEEE Service Center, 1997:4104 -4109.
  • 6S Verdu.Multiuser Detection[M].Cambridge,UK,Cambridge Univ.Press.1998.
  • 7S Verdu.Minimum probability of error for asynchronous Gaussian multi-access channel[J].IEEE Trans.Inform.Theory,1986:85-96.
  • 8B Aazhang,B Paris,G C Orsak.Multistage detection for asynchronous code division multiple access communication[J].IEEE Trans.Commum.1990(4):509-519.
  • 9L Castedo,O Macchi.Maximizing the information transfer for adaptive unsupervised source separation[A].In IEEE Workshop on Signal Proc[C],1997.65-68.
  • 10Yi Sun.Eliminating-highest-error and fastest-metric-descent criteria and iterative algorithms for Bit synchronous CDMA Multiuser Detection[A].In IEEE ICC'98[C],1998.1576-1580.

共引文献30

同被引文献34

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部