期刊文献+

旋转机械系统故障诊断发展综述 被引量:4

Summarized Development State and Trends on the Fault Diagnosis of Rotary Machinery System
原文传递
导出
摘要 总结了国内外旋转机械系统故障诊断的研究现状及存在的问题,介绍了机械系统故障数据采集和状态监测的常用方法,探讨了模糊理论、神经网络、遗传算法等在诊断决策算法研究中的应用前景,最后指出要发展完善信号提取及处理技术,加强人工智能理论的研究及应用,提高网络集成化水平,进而向与容错控制相结合的方向发展。 The current research situation and existing questions of fault diagnosis of rotary machinery system are summarized. The common methods of data acquisition and condition monitoring for mechanical system fault are introduced. It is discussed that the application prospect about fuzzy theory, neural network, genetic algorithm, etc, which is applied in algorithm research of diagnosis decision. And finally the development direction is pointed out that is developing and perfecting the signal extrac- tion and processing technology, enhancing the research and application of artificial intelligence theory; raising integration level of the network, and then to unify with the fault-tolerant control.
出处 《矿山机械》 北大核心 2008年第12期6-9,共4页 Mining & Processing Equipment
关键词 旋转机械 故障诊断 人工智能 发展综述 Rotary machinery Fault diagnosis Artifical intelligence Development summary
作者简介 车立志,男,1983年生,山东淄博人,在读硕士研究生,控制理论与控制工程专业,主要研究方向:计算机控制与仿真、智能故障诊断。
  • 相关文献

参考文献10

  • 1虞和济,陈民征,张省,等.基于神经蚓络的智能诊断[M].北京:冶金工业出版社.2002.
  • 2徐进永,罗士军,张子达.基于模糊故障树分析法的装载机液压系统故障诊断系统[J].吉林大学学报(工学版),2007,37(3):569-574. 被引量:18
  • 3潘翀,陈伟根,云玉新,杜林,孙才新.基于遗传算法进化小波神经网络的电力变压器故障诊断[J].电力系统自动化,2007,31(13):88-92. 被引量:62
  • 4孟祥萍,潘莹,耿卫星,霍飞,高燕.混沌免疫遗传算法在电力系统故障诊断中应用[J].电力自动化设备,2007,27(5):81-83. 被引量:8
  • 5王荣荣,梁武科,赵道利.基于粗糙集和遗传算法的水轮发电机组故障诊断方法[J].中国农村水利水电,2007(4):131-133. 被引量:8
  • 6S. Rajakarunakaran, E Venkumar, D. Devaraj and K. Surya Prakasa Rao. Artificial neural network approach for fault detection in rotary system[J]. Applied Soft Computing, 2008, 8(1): 740-748.
  • 7Yaguo Lei, Zhengjia He, Yanyang Zi, et al. Fault diagnosis of rotating machinery based on multiple ANFIS combination with Gas[J]. Mechanical Systems and Signal Processing, 2007, 21(5) 2280- 2294.
  • 8Faisel J. Uppal, Ron J. Patton and Marcin Witczak, A neuro-fuzzy multiple-model observer approach to robust fault diagnosis based on the DAMADICS benchmark problem [J]. Control Engineering Practice, 2006, 14(6): 699-717.
  • 9Mingsian Bai, Jiamin Huang, Minghong Hong, et al. Fault diagnosis of rotating machinery using an intelligent order tracking system[J]. Journal of Sound and Vibration, 2005, 280(3-5): 699-718.
  • 10Jian-Da Wu, Chin-Wei Huang and Rongwen Huang, An application of a recursive Kalman filtering algorithm in rotating machinery fault diagnosis[J]. NDT & E International, 2004, 37(5) 411-419.

二级参考文献44

共引文献90

同被引文献24

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部