期刊文献+

一种跟踪隐式曲面交线的算法 被引量:2

Efficient method for tracing intersections of two implicit surfaces
在线阅读 下载PDF
导出
摘要 传统的跟踪方法在求下一个跟踪点时一般是采用迭代法,而迭代法会出现初始值的选取和迭代收敛的问题。为此提出一种跟踪隐式曲面交线的算法。该方法最主要的优点是:在跟踪隐式曲面的交线时,在前一个跟踪交点已经求得的情况下,利用正方形与两个隐式曲面的交点,即可快速有效地求出下一个跟踪点,而不用涉及迭代收敛的判断。 When computing the next tracing point, the traditional tracing method generally used the iterative method. But the iterative method had to face the following problems. How to select the initial value? Whether the iteration converges or not? This paper presented a method for tracing the intersections of two implicit surfaces. The most obvious advantage of this method is: when tracing the intersections, it could quickly get the next tracing point by intersecting this square plane with the two implicit surfaces.
出处 《计算机应用研究》 CSCD 北大核心 2008年第7期2235-2237,共3页 Application Research of Computers
基金 浙江省自然科学基金项目(Y106166) 国家教育部回国人员启动基金资助项目
关键词 隐式曲面 交线 初始交点 跟踪 implicit surface intersections initial point tracing
作者简介 余正生(1967-),男,江西波阳人,副教授,博士,主要研究方向为计算机辅助几何设计、计算机图形学(yuzhengsheng@tom,com). 楚广琳(1983-),女,河南洛阳人,硕士研究生,主要研究方向为计算机图形学.
  • 相关文献

参考文献17

  • 1PHILIP J, SCHNEIDER D,EBERLY H. Geometric tools for computer graphics[ M]. [ S. l. ] : Industry and Electric Press, 2005: 437- 448.
  • 2KEVIN G, RONALD S, BALSYS J. Rendering the intersections of implicit surfaces[J]. IEEE Computer Graphics and Applications, 2003, 23(5) :70-77.
  • 3MILLER J R, RONALD N G. Using tangent balls to find plane sections of natural quadrics[ J]. IEEE Computer Graphics and Applications, 1992., 16(2):68-82.
  • 4MILLER J R, RONALD G . Geometric algorithms for detecting and calculating all comic sections in intersection of any two natural quadric surfaces[J]. Computer Vision, Graphics, and image Processing, 1995, 57(1) :55-66.
  • 5FAUX O D , PRATr M J. Computational geometry for design and manufacture[ M]. Chichester: Ellis Horwood Limited, 1979.
  • 6BARNHILL R E, KERSEY S N. A marching method for parametric surface/surface intersection[ J]. Computer Aided Geometric Design, 1990, 7(1-4): 257-280,
  • 7AZIZ N M, BATA R. Bezier surface/surface intersection [ J]. IEEE Computer Graphics and Application, 1990, 10( 1 ) : 50-58,
  • 8MARKOT R P, MAGEDSOON R L. Solution of tangential surface and curve intersection [ J ]. Computer Aided Design, 1989, 21 (7) : 421-429
  • 9BAJAJ C L, HOFFMAN C M, LYNCH R E, et al. Tracing surface intersections[ J]. Computer Aided Geometric Design, 1988, 5 (4) :285-307.
  • 10KRISHNAN S, DINESH M. An efficient surface intersection algorithm based on lower dimensional formulation [ J ]. ACM Trans on Graphics, 1997, 16 ( 1 ) :74-106.

二级参考文献16

  • 1Barnhill R E, Kersey S N. A Marching method for parametric surface/surface intersection [J]. CAGD, 1990, 7: 257~280.
  • 2Mason Woo, Jackie Neider, Tom Davis, et al. The official guide to learning OpenGL [M]. Version1.2 Addison-Wesley, 2001.
  • 3Foley, Van Dam, Feiner, et al. Computer graphics: prinple and practise second edition in C [M]. Pearson Education, 2002. 213~222.
  • 4Wu S T, Andrade L N. Marching along a regular surface/surface intersection with circular steps.Computer Aided Geometric Design, 16:4(1999) 767-788.
  • 5Hohmeyer M E. Robust and efficient intersection for solid modeling [Dissertation]. Berkeley: Computer Science Division, Department of Electrical Engineering and Computer Science, University of California, 1992.
  • 6Karim Abdel-Malek and Yeh Harn-Jou, On the determination of starting points for parametric surface intersections, Computer-aided Design, 29:1(1997) 21-35.
  • 7Asteasu C.Intersection of arbitrary surfaces. Computer Aided Design, 20(1998) 533-538.
  • 8S.L. Abrams et al., Efficient and reliable methods for rounded-interval arithmetic, Computer-aided Design, 30:8(1998) 657-665.
  • 9Snyder J. Interval arithmetic for computer graphics. In:Proceedings of ACM SIGGRAPH, (1992)121-130.
  • 10Hee-Seok Heo, Myung-Soo Kim and Gershon Elber, The intersection of two ruled surfaces,Computer-aided Design, 31:1(1999) 33-50.

共引文献6

同被引文献26

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部