期刊文献+

综合改进的粒子群神经网络算法 被引量:14

Integrative improved particle swarm optimization neural network arithmetic
在线阅读 下载PDF
导出
摘要 粒子群优化算法是一种解决非线性、不可微和多峰值复杂优化问题的优秀算法,但该算法在进化后期容易出现速度变慢以及早熟的现象;BP神经网络的学习算法是基于梯度下降这一本质的,因此存在着容易陷于局部极小值,收敛速度慢,训练时间长等问题。针对上述现象,对粒子群优化算法进行了增强粒子多样性和避免种群陷入早熟两个方面的改进,并提出了一种基于改进算法的粒子群神经网络算法,最后通过在IRIS数据集上进行的仿真实验验证了改进的有效性。 The particle swarm optimization arithmetic is an excellent optimization arithmetic that can solve the non-linear, un-fluxionary and multi-peak value optimizing problems. But in the process of looking for the excellent result, it is easily appear the phenomenon of speed becoming slow and precocious. The learning arithmetic of back propagation is base on the essence of grads descending, so there are inevitably problems of it is easy to get into partial least extremum, slowly constringency speed, long training time and so on. Improve the arithmetic at intensifying multiformity of particles and escaping the precocity of swarm, and put forward a particle swarm optimization neural network arithmetic based on the improved arithmetic. Prove the validity of the improving by the simulant experiments on the IRIS database.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第11期2890-2892,2896,共4页 Computer Engineering and Design
关键词 粒子群优化 神经网络 群智能 BP算法 粒子多样性 particle swarm optimization neural network swarm intelligence back propagation arithmetic multiformity of particles
作者简介 何佳(1981--),女,河北唐山人,硕士,助教,研究方向为多媒体数据库技术;E—mail:hejiamail@yahoo.com.cn 陈智慧(1979-),女,河北唐山人,硕士,助教,研究方向为面向对象程序设计、数据安全; 杨迎新(1972~),女,河北唐山人,博士研究生,副教授,研究方向为智能数据库技术。
  • 相关文献

参考文献8

二级参考文献30

  • 1樊玮.粒子群优化方法及其实现[J].航空计算技术,2004,34(3):39-42. 被引量:16
  • 2[1]Hornik K,Stinchcombe M,White H.Multilayer feed-forward networks are universal approximators[J].Neural Networks,1989,2(5):359-366.
  • 3[2]Rumelhart D E,Hinton G E,Williams R J.Learning representations by back propagating errors[J].Nature,1986,323(11):533-536.
  • 4[3]Sexton R S,Dorsey R E.Reliable classification using neural networks:a genetic algorithm and backpropagation comparison[J].Decision Support Systems,2000,30(1):11-22.
  • 5[4]Yang J M,Kao C Y.A robust evolutionary algorithm for training neural networks[J].Neural Computing and Application,2001,10(3):214-230.
  • 6[5]Franchini M.Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models[J].Hydrological Science Journal,1996,41(1):21-39.
  • 7[6]Kennedy J,Eberhart R C.Particle swarm optimization[A].Proceedings of IEEE International Conference on Neutral Networks[C].Australia:IEEE,1995.1942-1948.
  • 8[7]Shi Y H,Eberhart RC.Empirical study of particle swarm optimization[A].Proceedings of IEEE International Congress on Evolutionary Computation[C].USA:IEEE,1999.6-9.
  • 9[8]Yoshida H,Kawata K,Yoshikazu F.A Particle swarm optimization for reactive power and voltage control considering voltage security assessment[J].IEEE Transaction on Power System,2000,15(4):1232-1239.
  • 10[9]Carlisle A,Dozier G.Adapting particle swarm optimization to dynamic environments[A].Proceedings of International Conference on Artificial Intelligence[C].USA:IEEE,2000.11-15.

共引文献201

同被引文献108

引证文献14

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部