期刊文献+

一种改进的复值信号独立分量分析算法 被引量:2

Improved Algorithm for Independent Component Analysis of Complex Valued Signals
在线阅读 下载PDF
导出
摘要 独立分量分析方法无需完整的系统先验知识,可用于多天线移动通信系统多用户盲接收机。为了改善收敛速度,采用修正的具有三阶收敛速度的牛顿迭代法的近似公式,提出了一种改进的复FastICA算法。并将该算法应用于多输入多输出系统中进行仿真,结果表明新算法在与传统的复FastICA算法分离效果相当的情况下,迭代次数减少了16.5%,加快了收敛速度。 Independent component analysis can be used to be a blind receiver for multiple-input multiple-output (MIMO) mobile communication systems. ICA-based multi-user detectors do not require complete knowledge of the system like other traditional detectors. An improved CFICA algorithm was proposed. A new Newton’s iteration method was used which had three order of convergence to speedup the convergence speed. The simulation results of MIMO system which use the new algorithm show that the iterations of improved algorithm reduce 16.5% with the correspondent separation performance compared with the original algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第12期3333-3335,共3页 Journal of System Simulation
关键词 独立分量分析 复FastICA 牛顿迭代法 多输入多输出(MIMO) independent component analysis FastICA of Complex Valued Signals Newton’s iteration method MIMO (Multiput-Input Multiple-Output)
作者简介 李文元(1964-),男,陕西岐山人,副教授,研究方向为通信信号处理,移动通信抗干扰等; 金凤(1979-),女,陕西西安人,研究方向为军事移动通信等。
  • 相关文献

参考文献4

  • 1E Bingham A. Hyvarinen A fast fixed-point algorithm for independent component analysis of complex-valued signals [J]. Int.J. of Neural Systems (S0129-0657), 2000, 10( 10): 1-8.
  • 2张荣,薛国民.修正的三次收敛的牛顿迭代法[J].大学数学,2005,21(1):80-82. 被引量:27
  • 3Comon P. Independent component analysis, a new concept? [J]. Signal Processing (S0165-1684), 1994, 36(3): 287-314.
  • 4A Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans. Neural Networks (S1045-9227), 1999, 10(3): 626-634.

二级参考文献2

  • 1包雪松译.数值方法[M].北京:高等教育出版社,1990..
  • 2何旭初 苏煜诚 包雪松.计算数学简明教程[M].上海:人民教育出版社,1981..

共引文献26

同被引文献20

  • 1王小敏,曾生根,夏德深.基于松弛因子改进FastICA算法的遥感图像分类方法[J].计算机研究与发展,2006,43(4):708-715. 被引量:7
  • 2李鸿燕,马建芬,李灯熬,王华奎.一种基于ICA的盲源分离定点迭代算法[J].太原理工大学学报,2007,38(1):35-37. 被引量:4
  • 3谢德光,张贤达,李细林,朱峰.基于独立分量分析的雷达目标识别方法[J].系统工程与电子技术,2007,29(2):164-166. 被引量:8
  • 4Hyvrinen A, Karhunen J, Oja E. Independent component analysis[M]. New York: John Wiley & Sons, 2001.
  • 5Hyvrinen A, Oja E. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997 (9): 1483-1492.
  • 6Hyvrinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999,10(3) :626-634.
  • 7Sabrina Gaito,Giuliano Grossi. Extending mixtrue random pruning to nonpolynomial contrast functions in FastlCA[J]. IEEE International Symposium on Signal Processing and Information Technology, 2007 : 334-338.
  • 8Hyvarinen A, Karhunen J, Oja E. Independent component analysis [M]. New York, USA: Wiley Interscience, 2001.
  • 9Eriksson J, Koivunen V. Complex random vectors and ICA models: identifiability, uniqueness, and separability [J]. IEEE Trans. on Information Theory (S0018-9448), 2006, 52(3 ): 1017-1029.
  • 10H Li, M Correa. Application of Independent component analysis with adaptive density model to complex-valued FMRI data [J]. IEEE Trans-actions on Biomedical Engineering (S0018-9294), 2011, 58(10): 2794-2803.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部