期刊文献+

两端固定输流管道混沌运动预测 被引量:2

PREDICTING CHAOTIC MOTION OF A TWO END-FIXED FLUID CONVEYING PIPE
在线阅读 下载PDF
导出
摘要 采用Melnikov方法研究两端固定输流管道系统在基础简谐运动激励下发生混沌运动时系统参数需满足的解析条件,通过计算衡量受扰系统鞍点稳定流形和不稳定流形之间距离的Melnikov函数,确定基础激励振幅和平均流速与激励频率间的临界值关系,并与系统混沌运动的数值仿真进行对比分析。结果表明,Melnikov方法所确定的混沌运动临界参数值略小于数值仿真方法所观察的出现混沌运动时对应的临界参数值,使用该方法可有效预测系统混沌运动的发生,从而为工程应用提供理论依据。 When a fluid conveying pipe fixed at two ends is excited by harmonic motion of the base and its chaotic motion occurs,the analytic conditions that its parameters should satisfy are studied by using Melnikov method.The critical relations between the base excitation amplitude or the mean fluid flow-rate and the base excitation frequency are obtained by solving Melnikov functions for the distance between stable and unstable manifolds of saddle points of the perturbed system.Based on comparison between the results from theoretic analysis and numerical simulation,it could be concluded that the critical values of the parameter determined by Milnikov method are a little bit smaller than those corresponding to the chaotic motion observed firstly in numerical simulation.The method proposed here can effectively predict the chaotic motion of the piping system and it provides a theoretical foundation for engineering application.
出处 《振动与冲击》 EI CSCD 北大核心 2008年第6期99-102,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50075010)
关键词 输流管道 混沌运动 数值仿真 理论预测 MELNIKOV函数 fluid conveying pipe chaotic motion numerical simulation theoretical prediction Melnikov function
作者简介 包日东男,博士,副教授,1967年生
  • 相关文献

参考文献10

二级参考文献23

  • 1Guang-sheng Zou,Ji-duo Jin,Ying Han.Stability and Chaotic Vibrations of a Pipe Conveying Fluid under Harmonic Excitation[J].Advances in Manufacturing,2000(3):179-185. 被引量:6
  • 2王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 3包日东,闻邦椿,龚斌.微分求积法分析水下输流管道的竖向动力特性[J].东北大学学报(自然科学版),2007,28(2):241-245. 被引量:6
  • 4Paidoussis M P,Li G X.Pipes conveying fluid:a model dynamical problem[J].Journal of Fluid and Structures,1993,8:853-876.
  • 5Chio S T,Chou Y T.Vibration analysis of elastically supported turbomachinery baldes by the modified differential quadrature method[J].Journal of Sound and Vibration,2003,259(3):525-539.
  • 6Bert C W,Malik M.Differential quadrature method in computational mechanics:a review[J].Appl Mech Rev,1996,49(1):1-27.
  • 7Paidoussis M P.Flow-induced instabilities of cylindrical structures[J].Applied Mechanics Reviews,1987,40:163-175.
  • 8Holmes P J.Pipes supported at both ends cannot flutter[J].Journal of Applied Mechanics,1978,45(3):619-622.
  • 9Holmes P J.Bifurcation to divergence and flutter in flow-induced oscillations:a finite dimensional analysis[J].Journal of Sound and Vibration,1977,53(4):471-503.
  • 10Blevins R D.Flow-induced vibration[M].New York:Van Nostrand Reinhold,1977:300-306.

共引文献100

同被引文献30

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部