期刊文献+

SVM中不平衡数据的分离超平面的校正方法 被引量:3

Revising method for separation hyperplane of imbalanced data in SVM
在线阅读 下载PDF
导出
摘要 针对两类不平衡数据的分离超平面的偏移问题提出一种平衡方法。首先,对两类样本数据在核空间中进行核主成分分析,分别求出两类样本数据的在特征空间中的主要特征值;然后,根据两样本容量以及各自的特征值所提供的信息,对两类数据给出惩罚因子比例;最后,通过优化训练,产生一个新的分离超平面。该分类面校正了标准的支持向量机的分类误差。实验显示了所提出方法的有效性,即与标准的支持向量机相比,不仅平衡了错分率而且还能减少错分率。 A balance method for the offset of separation hyperplane of biclassification imbalanced data is proposed.Firstly,the principal eigenvalues are found respectively of the two classes of samples in feature space by using Kernel Principal Component Analysis(KPCA).Secondly,one penalty proportion is given based on the information provided by the sizes of the two sample data and their eigenvalues.Finally,a new separation hyperplane is generated by the optimization training.The hyperplane revises the error of the standard Support Vector Machines.Experiments show the efficiency of proposed method,i.e.comparing with standard Support Vector Machines the classification error can be balanced and be also decreased.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第19期169-171,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60574075 No.60674108)
关键词 不平衡数据 核主成分分析 支持向量机 偏移 imbalaneed data Kernel Principal Component Analysis(KPCA) Support Vector Machines(SVM) offset
作者简介 刘万里(1964-),男,副教授,博士生,研究方向为:机器学习、最优化方法及应用; E-mail : lwanli@lynu.edu.cn 刘三阳(1959-),男,教授,博士生导师,研究方向为:最优化理论、方法及应用。
  • 相关文献

参考文献9

  • 1Cristianini N, Shawe -Taylor J.An introduction to support vector machines and other kernel based learning methods[M].Cambridge: Cambridge University Press,2000.
  • 2Japkowicz N,Stephen S.The class imbalance problem:a systematic Study[J].Intelligent Data Analysis,2002,6(5):429-449.
  • 3Chawla N V,Bowyer K W,Hall L O,et al.Smote:synthetic minority over-sampling technique[J].Journal of Artificial Intelhgence Research, 2002,16 ( 3 ) : 321-357.
  • 4Ling C,Li C.Data mining for direct marketing problems and solutions[C]//Proceedings of the Fourth International Conference on Knowledge Discovery and Data Ming.New York:AAAI Press. 1998: 73-79.
  • 5Miroslav K,Stan M.Addressing the curse of imbalanced datasets: one-sided sampling[C]//Proceedings of the Fourteenth International Conference on Machine Learning, Nashville,Tennessee, 1997 : 178 - 186.
  • 6Rehan A,Stephen K,Nathalie J.Applying support vector machines to imbalanced datasets[C]//Fifteenth European Conference on Machines Learning.Berlin: Springer-Verlag, 2004 : 39-50.
  • 7郑恩辉,李平,宋执环.不平衡数据知识挖掘:类分布对支持向量机分类的影响[J].信息与控制,2005,34(6):703-708. 被引量:17
  • 8Lin I,Lee Y,Wahba G.Support vector machines for classification in nonstandard situations[J].Machine Learning,2002,46(2):191-202.
  • 9贾银山,贾传荧.一种加权支持向量机分类算法[J].计算机工程,2005,31(12):23-25. 被引量:20

二级参考文献21

  • 1Vapnik V. The Nature of Statistical Learning Theory[M].Springer-Verlag, 1995.
  • 2Cortes C, Vapnik V. Support Vector Networks[J]. Machine learning,1995, 20(3):273-297.
  • 3Scholkopf B, Smola A J. Williamson R C, et al. New Support Vector Algorithms[J]. Neural Computation, 2000, 12(5):1207-1245.
  • 4Scholkopf B, Smola A J. Learning with Kernels[M]. MIT Press, 2002.
  • 5Chew H G, Bogner R E, Lim C C. Dual-nu Support Vector Machine with Error Rate and Training Size Biasing[A]. Proceedings of the 26th International Conference on Acoustics, Speech and Signal Processing [C], IEEE, 200 1 :1269-1272.
  • 6Lin Chunfu, Wang Shengde. Fuzzy Support Vector Machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2 ):464-471.
  • 7Wu Xiaoyun, Rohini S. New v-Support Vector Machines and Their Sequential Minimal Optimization[A]. Proceedings of the TwentiethInternational Conference on Machine Learning[C], AAAI Press,2003:824-831.
  • 8Chih-Chang, Chih-Jen Lin. LIBSVM: a Library for Support Vector Machine[CP/OL]. http:∥www, csie.ntu.tw/~cjlin/libsvm,2001.
  • 9Vapnik V N. The Nature of Statistical Learning Theory [ M ].New York, USA: Springer-Verlag, 1999.
  • 10Burges C. A tutorial on support vector machines from pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2 (2) : 121 -167.

共引文献33

同被引文献37

  • 1龙晓林,蒋静坪.基于SVM的机器人工件识别[J].华中科技大学学报(自然科学版),2005,33(2):41-43. 被引量:6
  • 2Vapnik V N.Statistical Learning Theory[M].New York,USA:Wiley,1998.
  • 3Reran A,Stephen K,Nathalie J.Applying Support Vector Machines to Imbalanced Datasets[C]//Proc.of the 15th European Conference on Machines Learning.Berlin,Germany:Springer-Verlag,2004:39-50.
  • 4Gustavo E A P A,Ronaldo B,Prati C,et al.A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data[J].SIGKDD Explorations,2004,6(1):20-29.
  • 5Kubat M,Matw I S.Addressing the Curse of Imbalanced Training Sets:One-sided Selection[C]//Proc.of the 14th International Conference on Machine Learning.San Francisco,USA:Morgan Kaufmann,1997:179-186.
  • 6Chawla N V,Hall L O,Bowyer K W,et al.SMOTE:Synthetic Minority Oversampling Technique[J].Journal of Articial Intelligence Research,2002,16(3):321-357.
  • 7He Haibo,Garcia E A.Learning from Imbalanced Data[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(9):1263-1284.
  • 8Zhou Zhihua,Liu Xuying.Training Cost-sensitive Neural Networks with Methods Addressing the Class Imbalance Problem[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(1):63-77.
  • 9Alejo R,Sotoca J M,Casa? G A,et al.An Empirical Study for the Multi-class Imbalance Problem with Neural Networks[EB/OL].(2008-10-20).http://dblp.uni-trier.de/db/ conf/ciarp/ciarp2008.html#AlejoSC08.
  • 10Veropulos K,Campbell C,Cristianini N.Controlling the Sensitivity of Support Vector Machine[C]//Proc.of International Joint Conference on Artificial Intelligence.Stockholm,Sweden:[s.n.],1999:55-60.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部