期刊文献+

铬酸溶液后处理增强碳纳米管的场发射特性(英文) 被引量:2

Enhancement of field emission from carbon nanotubes by post-treatment with a chromium trioxide solution
在线阅读 下载PDF
导出
摘要 采用铬酸溶液对碳纳米管进行后处理,旨在修饰碳纳米管的表面形态及改变碳纳米管的表面结构,进一步增强碳纳米管的场发射特性。铬酸溶液后处理与传统以硝酸后处理的方法不同之处在于,铬酸溶液可以更有效率地与非晶质碳及碳纳米管发生化学反应。可以预期碳纳米管经过铬酸溶液处理后,碳纳米管的表面形态、化学组成及场发射特性会产生很大的变化。场发射的数据显示,经铬酸溶液处理20min的碳纳米管场发射电流比未经过铬酸溶液处理的场发射电流有明显的增加。然而,长时间的铬酸溶液处理也会降低碳纳米管场发射特性。经铬酸溶液处理20min的碳纳米管场发射电流增强原因主要为适度的铬酸溶液处理可以改变碳纳米管的表面形态,使碳管的表面密度增大、场发射功函数降低。但过长时间的铬酸溶液后处理,又会造成碳纳米管数目减少及表面结构受到损害,导致碳纳米管场发射特性变差。 A simple method is described to functionalize the surface and to modify the structures of multi-walled carbon nanotubes (MWCNTs) grown on silicon substrates using chromium trioxide (CrO3 ) solution. Unlike nitric acid (HNO3) used in the conventional post-treatment for MWCNTs, the chemical reaction with CrO3 involves amorphous carbon and the carbon nanotubes themselves. It is expected that the surface morphology, chemical composition, and field emission of MWCNTs should be significantly changed after CrO3 solution treatment. The results showed that after 20 rain of CrO3 solution treatment, the emission currents were enhanced compared with the as-grown MWCNTs. However, extended treatment over 20 rain was found to degrade the field emission properties of the film. The enhancement in field emission after 20 min of CrO3 solution treatment can be ascribed to the modification of surface morphology, the increase in surface density of MWCNTs, and the lowering of the work function. Prolonged CrO3 treatment dissolves MWCNTs and thus results in a decrease in field emission.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2008年第2期104-110,共7页 New Carbon Materials
关键词 碳纳米管 场发射 Carbon nanotube (CNTs) Field emission
作者简介 李世鸿(1959-),男,教授,博士生导师,从事钻石薄膜、非结晶半导体、太阳能电池、纳米技术之研究。E—mail:ypc@cht.com.tw;sflee@mail.dyu.edu.tw
  • 相关文献

参考文献2

共引文献10

同被引文献22

  • 1张哲娟,孙卓,陈奕卫.高能球磨对碳纳米管形貌及场致发射显示特性的影响[J].光学学报,2005,25(11):1510-1514. 被引量:3
  • 2Iijima S. Helical microtubules of graphitic carbon [J]. Nature 1991, 354: 56-58.
  • 3Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery [ J ]. Current Opinion in Chemical Biology, 2005, 9: 674-679.
  • 4Carson L, Kelly-Brown C, Stewart M. et al. Synthesis and characterization of chitosan-carbon nanotube composites [ J ]. Materials Letters, 2009, 63 ( 6-7 ) : 617-620.
  • 5Kumar M, Ando Y. A simple method of producing aligned carbon nanotubes from an unconventional precursor-Camphor [ J ]. Chemical Physics Letters, 2003, 374(5-6) : 521-526.
  • 6Afre R A, Soga T, Jimbo T, et al. Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies[ J]. Microporous and Mesoporous Materials, 2006, 96 (1- 3) : 184-190.
  • 7Andrews R J, Smith C F, Alexander A J. Mechanism of carbon nanotube growth from camphor and camphor analogs by chemical vapor deposition [ J]. Carbon, 2006, 44 (2): 341-347.
  • 8Ghosh P, Soga T, Afre R A, et al. Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon : Turpentine oil [ J]. Journal of alloys and compounds, 2008,462 ( 1-2 ) : 289-293.
  • 9Manafi S, Nadali H, Irani H R. Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method [ J]. Materials Letters, 2008, 62 (26) : 4175-4176.
  • 10Chai S P, Zein S H S, Mohamed A R. Moderate temperature synthesis of single-walled carbon nanotubes on alumina supported nickel oxide catalyst [ J]. Materials Letters, 2007, 61 ( 16 ) : 3519-3521.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部