期刊文献+

试题难度的事前认知任务分析 被引量:29

The Prior Cognitive Task Analysis of Test Item Difficulty
在线阅读 下载PDF
导出
摘要 试题的难度常常用试题的通过率来表示,这种事后检验的方法虽然简单易行,其数量指标严格确定,但是对考生水平相当敏感,也不能在试题设计中起到主导作用。本研究根据认知任务分析的基本原则,设计了对试题难度进行事前评定的框架和严格的实施程序,并以高等数学试题为分析对象进行了检验。根据数学试题的特点,设定了要素数量、要素辨识难度、原理数量、原理辨识难度和认知负荷等指标。结果显示,各试题事前难度值与其通过率之间存在极其显著的相关。评定指标之间、评定者之间也存在极其显著的一致性,说明本研究的事前评定方法具有充分的效度和信度。 The passing rate of a test item often serves as an index of its difficulty. This posterior index,though easy to obtain and definite, is susceptible to students' learning level. It cannot play a leading role in designing test items. The present research tried to design a prior-to-test index of test item difficulty. According to the principles of cognitive task analysis, a frame and a procedure to be strictly executed were mapped out for the prior assessment of higher mathematics test items. Taking into account the characteristics of math problems, we designed such indexes as number of elements in a problem, element identification difficulty, number of principles used in answering, principle identification difficulty and cognitive load. The results show that prior difficulty is most significantly correlated with the passing rates of math test items. High correlation also exists among sub-indexes in assessment and among evaluators, indicating sufficient validity and reliability of the prior assessment method developed by the present reseaeh.
作者 邵志芳 余岚
出处 《心理科学》 CSSCI CSCD 北大核心 2008年第3期696-698,共3页 Journal of Psychological Science
关键词 试题难度 认知任务分析 事前难度 test item difficulty, cognitive task analysis, prior diffculty
作者简介 通讯作者:邵志芳,男。E—mail:zfshao@psy.ecnu.edu.cn
  • 相关文献

参考文献10

  • 1Newell,A.,& Simon,H.A.Human problem-solving.Englewood Cliffs,NJ:Pretice Hall,1972.
  • 2Funke,J.Solving complex problems:exploration and control of complex systems.In Sternberg,R.J.& Frensch,P.A.(Ed.),Complex Problem Solving:Principles and Mechanisms.Lawrence Erlbaum Associates,Inc.1991,185-222.
  • 3Kotovsky,K.,Hayes,J.R.,& Simon.H.A.Why are some problems hard ? Evidence from Tower of Hanoi.Cognitive Psychology,1985,17:248-294.
  • 4De Corte,E.,& Verschaffel,L.Children's solution processes in elementary arithmetic problems:Analysis and improvement.Journal of Educational Psychology,1981,6:765-779.
  • 5Mayer,R.E.Frequency norms and structural analysis of algebra story problems into families,categories and templates.Instructional Science,1981,10:135-175.
  • 6Low,R.,& Over,R.Hierarchical ordering of schematic knowledge relating to area-of-rectangle problems.Journal of Educational Psychology,1992,1:62-69.
  • 7邵志芳,杨治良.影响概念难度的两个基本因素[J].心理科学,1992,15(6):8-12. 被引量:4
  • 8邵志芳,刘永芳,钟毅平.关于问题难度的实验研究[J].心理科学,1996,19(5):278-281. 被引量:7
  • 9辛自强.关系-表征复杂性模型的检验[J].心理学报,2003,35(4):504-513. 被引量:43
  • 10DuBois D,& Shalin,V.L.Describing Job Expertise Using Cognitive Oriented Task Analyses (COTA).In J.M.Schraagen,S.F.Chipman,& V.L.Shalin (Eds.) Cognitive Task Analysis,2000,41-55.Mahwah,NJ:Lawrence Erlbaum Associates.

二级参考文献18

  • 1辛自强,俞国良.学习不良儿童研究的社会认知取向[J].心理科学,2001,24(5):544-548. 被引量:23
  • 2Lewis A, Mayer R E. Students' miscomprehension of relational statements in arithmetic word problem. Journal of Educational Psychology, 1987, 79: 363~371
  • 3Commons M L, Trudeau E J, Stein S A, Richards F A. Hierarchical complexity of tasks shows the existence of developmental stages. Developmental Review, 1998, 18: 237~278
  • 4Halford G S, Wilson W H, Phillips S. Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 1998, 21(6): 803~831
  • 5Ceci S J. On bio-ecological treatise on intellectual development. Englewood Cliffs, New Jersey: Prentice Hall, 1990. 93~153
  • 6Sternberg R J. Beyond IQ: A triarchic theory of human intelligence (in Chinese). Translated by Yu Xiaolin, Wu Guohong. Shanghai: East China Normal University Press , 2000, 15-17(斯腾伯格. 超越IQ: 人类智力的三元理论. 俞晓琳, 吴国宏译. 上海: 华东师范大学出版社, 2000, 15-17 )
  • 7Mayer R E. Frequency norms and structural analysis of algebra story problems into families, categories and templates. Instructional Science, 1981, 10: 135~175
  • 8Mayer R E. Memory for algebra story problems. Journal of Educational Psychology, 1982, 74: 199~216
  • 9Low R, Over R. Hierarchical ordering of schematic knowledge relating to area-of-rectangle problems. Journal of Educational Psychology, 1992, 84(1): 62~69
  • 10Montague M. Strategy instruction and mathematical problem-solving. Reading, Writing, and Learning Disabilities, 1988, 4: 275~290

共引文献49

同被引文献202

引证文献29

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部