期刊文献+

一类三阶非线性常微分方程的奇摄动边值问题 被引量:6

Singularly perturbed BVP for a third nonlinear ODE
在线阅读 下载PDF
导出
摘要 利用边界层函数法研究一类非线性三阶奇摄动方程的边值问题.当gy′>0时,首先将所论问题转化成等价的Tikhonov方程组边值问题,然后构造了它的双边界层渐近解,并证明了所有边界函数的指数式衰减特性.最后给出了所论问题解的存在唯一性以及渐近解的余项估计.当gy′<0时,简要地说明了为什么本问题一般无解. This paper studied a kind of BVP of nonlinear third order singularly perturbed equations by boundary layer function method. When gy′〉0, at first, the problem was turned to a BVP of an equivalent Tikhonov system. Then the asymptotic solution of doubly boundary layer for the system was constructed, and the character of exponential decay for all boundary functions was proved. Finally the main results of this paper: existence and uniqueness of solution and estimarion of remainder for the problem were given. When gy′〈0, in general, there is no solution to this problem.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期12-20,共9页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(10671070) 上海市教育委员会E-研究院建设项目(E03004) 地理信息科学教育部重点实验室开放课题 上海市浦江人才计划(05PJ14040)
关键词 奇异摄动 边界函数 不变流形 渐近分析 singular perturbation boundary functions invariant manifold asymptotic analysis
作者简介 陈丽华,女,副教授.E—mail:clhfq@yahoo.com.cn.通讯作者:倪明康,男,教授.
  • 相关文献

参考文献8

  • 1HOWES F A. The asymptotic solution of a class of third-order boundary value problems arising in the theory of thin film flows[J]. SIAM Appl Math, 1983,43: 993-1004.
  • 2倪守平.一类三阶非线性奇摄动边值问题解的渐近展开.福建师范大学学报:自然科学版,1988,4(2):8-13.
  • 3苗树梅.奇摄动三阶微分方程的边值问题[J].吉林大学自然科学学报,1989(1):1-9. 被引量:11
  • 4赵为礼.一类三阶非线性边值问题的奇摄动[J].数学年刊(A辑),1995,1(3):350-358. 被引量:9
  • 5VASIL'EVA A B, BUTUZOV V F. Singular Perturbed Equations in the Critical Case(in Russian)[M], Moscow: Nauka, 1978.
  • 6VASIL'EVA A B, BUTUZOV V F. Asymptotic Expansions of Solutions of Singularly Perturbed Equations (in Russian) [M]. Moscow: Nauka, 1973.
  • 7ESIPOVA V A. Asymptotic properties of solutions of general boundary value problems for singularly perturbed conditionally stable systems of ordinary differential equations[J]. Differential Equations, 1975,11 (11): 1457-1465.
  • 8林武忠,汪志鸣.奇摄动边值问题的解对给定数据导数的渐近分析[J].华东师范大学学报(自然科学版),2006(1):20-22. 被引量:8

二级参考文献5

  • 1莫嘉琪,数学物理学报,1985年,5卷,2期,225页
  • 2Vasil'eva A B, Butuzov V F. Asymptotic expansions of solutions of singularly perturbed equations(in Russian)[M]. Moscow: Nauka, 1973.
  • 3Vasil'eva A B, Esipova V A. An extension of the class of conditionally stable singularly perturbed systems, to which the boundary function methods is applicable(in Russian)[J]. Differential Equations, 1975, 11: 1159-1174.
  • 4Esipova V A. Asymptotic properties of solutions of general boundary value problems for singularly perturbed conditionally stable systems of ODEs(in Russian)[J]. Differential Equations, 1975 11: 1956-1966.
  • 5Vasil'eva A B, Butuzov V F, Kalachev L V. The Boundary Function Method for Singular Perturbation Problems[M]. Philadelphia: SIAM Studies in Applied Mathematics, vol14, 1995.

共引文献24

同被引文献47

  • 1Mo JiaqiDept.of Math.,Anhui Normal Univ.,Wuhu 241000..THE SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE PROBLEMS[J].Applied Mathematics(A Journal of Chinese Universities),2000,15(4):377-382. 被引量:8
  • 2倪守平.奇摄动向量Robin问题的对角化方法[J].应用数学和力学,1989,10(4):315-322. 被引量:8
  • 3林苏榕,林宗池.奇摄动非线性状态调节器问题的渐近解[J].应用数学和力学,1995,16(6):479-483. 被引量:3
  • 4唐荣荣.一类四阶非线性奇摄动方程的边界层问题(英文)[J].数学杂志,2007,27(4):385-390. 被引量:10
  • 5Esipova V A.Asymptotic properties of solutions of general boundary value problems for singularly perturbed conditionally stable systems of ordinary differential equations[J].Differential Equations,1975,11(11):1457-1465.
  • 6Vasil'eva A B,Butuzov V F.Asymptotic expansions of solutions of singularly perturbed equations (in Russian)[M].Moscow:Nauka,1973.
  • 7Horn R A,Johson C R.Topics in matrix analysis[M].Cambridge:Cambridge University,1991:459-489.
  • 8Yao Jingsun, Chen Lihua, Wen Zhaohui, et al. Solving method for the single-kink soliton to a disturbed coupled burgers system[J]. 中国物理快报, 2011, 28(8): 1-4.
  • 9Mo Jiaqi. The singularly perturbed nonlinear boundary value problems[J].应用数学,2004,17(1):37-41.
  • 10MOBAN K, KADALBAJOO, REDDY Y N. A boundary value method for a class of nonlinear singular pertur- bation problem [J]. Appl. Numer. 1988, 4:587-594.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部