期刊文献+

小时风速的向量自回归模型及应用 被引量:76

A Vector Autoregression Model of Hourly Wind Speed and Its Applications in Hourly Wind Speed Forecasting
在线阅读 下载PDF
导出
摘要 短期风速预测对并网风力发电系统的运行有重要意义。该文简述了短期风速预测的价值和方法,分析了小时风速的日变化特点。在此基础上,提出将单变量小时风速时间序列向量化,以消除日周期非平稳,进而建立了向量自回归(vector autoregression,VAR)模型,并用于小时风速预测。算例表明,正常天气条件下,该模型可以预测提前72 h的短期风速。该文提出的方法和模型具有一定的普适性,可用于其它领域的时间序列建模与预测。 Short-term wind speed forecasting is important to the operation of grid-connected wind power generation systems. This paper outlined the value and methods of short-term wind speed forecasting. The characteristic of diurnal hourly wind speed variation has been thoroughly analyzed. A method named as vectorization of univariate hourly wind speed time series has been presented for eliminating diurnal nonstationary, and vectorized hourly wind speed was expressed as a vector autoregression (VAR) model. Finally, the VAR model was applied to forecast hourly wind speed. The results showed that the presented VAR model can yield satisfactory hourly wind speed forecast as long as 72 h ahead under normal weather conditions. The proposed method is suitable for eliminating the periodic nonstationary, and can be used in other time series modeling and forecasting.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第14期112-117,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(60775047) 国家863高技术基金项目(2007AA04Z244) 高校科技创新工程重大项目(706043)~~
关键词 风力发电 小时风速 向量自回归 预测 wind power generation hourly wind speed vector autoregression forecast
作者简介 孙春顺(1965-),男,湖南东安人,博士研究生,主要研究方向为电力系统运行与控制、风力发电,suncs65@csust.edu.cn; 王耀南(1957-),男,云南昆明人,教授,博士生导师,主要研究方向为人工智能、智能控制、图像处理和模式识别等; 李欣然(1957—),男,湖南娄底人,教授,博士生导师,主要研究方向为电力系统分析与控制、电力系统辨识与建模等。
  • 相关文献

参考文献36

  • 1Sanchez I. Short-term prediction of wind energy production [J]. International Journal of Forecasting, 2006, 22(1): 43-56.
  • 2Schwartz M N, Bailey B H. Wind forecasting objectives for utility schedulers and energy traders[R]. Golden, Colorado, USA: National Renewable Energy Laboratory, 1998.
  • 3Ahlstrom M, Jones L, Zavadil R, et al. The future of wind forecasting and utility operations [J]. IEEE Power and Energy Magazine, 2005, 3(6): 57-64.
  • 4SaintcrossJ, PiwkoR, BoukarimG, etal. The effectsofintegrating wind power on transmission system planning, reliability, and operations, report on phase 1: preliminary overall reliability assessment[R]. New York, USA: GE Power Systems Energy Consulting, 2004.
  • 5Li Shuhui, Wunsch D C, O'Hair E A, et al. Using neural networks to estimate wind turbine power generation[J]. IEEE Transactions on Energy Conversion, 2001, 16(3): 276-282.
  • 6Denny E, O'Malley M. Wind generation, power system operation, and emissions reduction[J]. IEEE Transactions on Power Systems, 2006, 21(1): 341-347.
  • 7Sfetsos A. A comparison of various forecasting techniques applied to mean hourly wind speed time series[J]. Renewable Energy, 2000, 21(1): 23-35.
  • 8Giebel G. The state-of-the-art in short-term prediction of wind power - a literature overview [R]. Roskilde, Denmark: Rise National Laboratory, 2003.
  • 9Walmsley J L, Banthelmie R J, Burrows W R. The statistical prediction of offshore winds from land-based data for wind-energy applications[J]. Boundary-Layer Meteorology, 2001(101): 409-433.
  • 10Alberto Fabbri, Tomas Gomez San Roman, Juan Rivier Abbad, et al. Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market[J]. IEEE Transactions on Power Systems, 2005, 20(3): 1440-1446.

二级参考文献51

  • 1李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105. 被引量:274
  • 2吴俊玲,周双喜,孙建锋,陈寿孙,孟庆和.并网风力发电场的最大注入功率分析[J].电网技术,2004,28(20):28-32. 被引量:173
  • 3李建康.时间序列建模应用[J].江苏工学院学报,1994,15(2):72-77. 被引量:6
  • 4高俊芳,吴清.时间序列ARMA模型及其应用[J].上海工程技术大学学报,1996,10(4):68-73. 被引量:11
  • 5Tande J O, Hunter R. Expert group study on recommended practices for wind turbine testing and evaluation-estimation of cost of energy from wind energy conversion systems[R]. 1994.
  • 6Alexiadis M C, Dokopoulos p S, Sahsamanoglou H S. Wind speed and power forecasting based on spatial mmelagon models [J].Tmnsaclions on Energy Conversion , 1999, 14(3): 836-842.
  • 7Li Shuhui, Wunsch D C, O'Hair E A, et al. Using neural networks to estimate wind turbin~ power generation[J].IEEE Transactions on Energy Conversion, 2001, 16(3): 276-282.
  • 8安鸿志,数理统计与应用概率,1993年,8卷,4期,1页
  • 9Peng T M,IEEE Trans PWRS,1992年,7卷,1期,25页
  • 10邓佑满,电力系统超短期负荷预报,1991年

共引文献1066

同被引文献856

引证文献76

二级引证文献1753

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部