期刊文献+

线性模型回归参数极大似然估计的约束EM算法

The Restricted EM Algorithm for ML Estimation on the Parameter for Linear Model
在线阅读 下载PDF
导出
摘要 提出了非线性不等式约束下线性模型回归系数渐进极大似然估计的EM算法,利用极大似然估计的渐近正态性质,将EM算法的M-步转化为随机优化问题,给出了该随机优化问题的极限问题,即利用更易求解的极限问题的最优解来代替原优化问题的最优解,并证明了原优化问题的最优解是依概率收敛于极限问题的最优解. This paper proposes the EM algorithm for asymptotic ML Estimation under nonlinear inequalities restrictions on the parameter for linear model. By using the asymptotic normality of the maximum likelihood estimators, we change this kind of estimation problem to a stochastic optimization problem in the M-step, and give the limit problem of the stochastic optimization problem, that is, we get the optimal solution of the stochastic optimization problem by using the limit problem whose optimal solution is easily computed. It proves that the optimal solution of the stochastic optimization problem is converged to the optimal solution of the limit problem in probability.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2008年第3期231-234,共4页 Journal of Henan University:Natural Science
关键词 极大似然估计 非线性不等式约束 渐近性 ML Estimation asymptotic nonlinear inequalities restrictions
作者简介 文生兰(1981-),女,河南唐河人,硕士研究生.E-mail:wenshenglan@sina.com.
  • 相关文献

参考文献10

  • 1Kim D K, Taylor J M G. The restricted EM algorithm for maximum likelihood estimation under linear restrictions on the parameters [J]. J Amer Statist Assoc, 1995, 430: 708-716.
  • 2Shi Ning-Zhong, Zheng Shu-Rong, Guo Jianhua. The restricted EM algorithm under inequality restrictions on the parameters[J]. Journal of Multivariate Analysis, 2005,92 : 53- 76.
  • 3Kudo A. A multivariate analogue of the one-sided test[J]. Biometrika, 1963, 50: 403-418.
  • 4Dykstra R L. An algorithm for restricted least squares regression[J]. J Amer Statist Assoc, 1983, 78: 837-842.
  • 5郑术蓉,史宁中,郭建华.含缺失数据线性模型的线性不等式约束EM算法[J].中国科学(A辑),2005,35(2):231-240. 被引量:12
  • 6Wang J D. The asymptotics of least-squares estimators for constrained nonlinear regression [J]. Ann Statist, 1996, 24: 1316-1326.
  • 7Liu X S, Wang J D. Testing for increasing convex order in several populations [J]. Ann Inst sat Math, 2003, 55: 121- 136.
  • 8Jennirich R. Asymptotic properties of nonlinear least squares estimators [J]. Ann Math Statist, 1969, 40:633-643.
  • 9Attouch H. Variational convergence for function and operators [M]. Pitman, Condon, 1985.
  • 10D'Esopo D A. Convex programming procedure [J]. Naval Research Logistics Quarterly, 1959, 6: 33-42.

二级参考文献10

  • 1Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm(with discussion). Journal of the Royal Statistical Society, Series B, 1977, 39:1-38.
  • 2Little R J A, Rubin D R. Statistical Analysis with Missing Data. New York: Wiley, 1987.
  • 3Wu C F J. On the convergence properties of the EM algorithm. The Annals of Statistics, 1983, 11: 95- 103.
  • 4Zangwill W I. Nonlinear Programming: A Unified Approach. Englewood Cliffs: Prentice Hall, 1969.
  • 5Boyles R A. On the convergence of the EM algorithm. Journal of the Royal Statistical Society, Series B,1983, 45:47-50.
  • 6Kim D K, Taylor J M G. The restricted EM algorithm for maximum likelihood estimation under linear restrictions on the parameters. Journal of the American Statistical Association, 1995, 430:708-716.
  • 7Dykstra R L, Robertson T, Silvapulle M J. Journal of Statistical Planning and Inference, 2002, 107(1-2).
  • 8Shi N Z, Zheng S R, Guo J H. The restricted EM algorithm under inequality restrictions on the parameters. Journal of Multivariate Analysis, 2005, 92:53-76.
  • 9Danfig G B, Eaves B C. Studies in Optimization. Washington: Mathematical Association of America,1974.
  • 10Liew C K. Inequality constrained least-squares estimation. Journal of the American Statistical Association, 1976, 71:746-751.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部