期刊文献+

喷油压缩机卧式油气分离器特性的数值模拟及实验研究 被引量:13

Theoretical and Experimental Research on Oil-Gas Separator in Compressor System
在线阅读 下载PDF
导出
摘要 在对油气分离器内气相流场模拟计算的基础上,采用随机轨道模型对不同直径油滴在分离器一次油分内的运动轨迹进行了模拟计算,并使用Malvern粒度分析仪对油分离器一次油分出口处的油滴直径分布特征进行了实验测量,同时对排气压力和喷油量变化对一次油分效率的影响进行了测量.结果表明:不同直径的油滴颗粒的运动轨迹差别较大,其分离时间和分离效率也截然不同,直径较大的颗粒较容易分离下来;油滴的入射位置对其运动轨迹及分离时间也有明显的影响.随喷油量的增加,油气混合物中大直径油滴增多,一次油分效率增高;一次油分效率随排气压力的升高先提高后降低,排气压力为0.65MPa时,一次油分效率最高.模拟计算表明:此分离器一次油分能够完全分离的最小油滴直径为16μm;实测油气分离器出口处油滴的最大直径介于17.7~20.5μm之间,所占体积分数为0.2%.实验结果与数值计算结果基本吻合. Based on the numerical simulation of gas flow in an oil-gas separator, traces of different diameter oil droplets in the separator were simulated using the discrete random walk model. The sizes of oil droplets at the outlet of the oil-gas separator were measured by Malvern analyzer. Separation efficiency of the separator was tested with different discharge pressure and mass of oil injection. The results show that the traces of different diameter oil droplets are different, and the corresponding separation efficiency and the separation time are not the same. The larger diameter oil droplets are separated easily. The separation efficiency increases with the increase of the oil in- jection mass, however, it increases and then decreases with the increasing discharge pressure. When the discharge pressure was 0.65 MPa, the maximum separation efficiency is obtained. The simulation results indicate that under the calculation condition, the minimal diameter of oil droplets separated completely by the separator is 16 μm. And the measured maximal diameter of oil droplets at the separator outlet is from 17. 7 μm to 20.5 μm The simulation results are in agreement with the experimental data.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第5期561-564,577,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50576072)
关键词 喷油压缩机 油气分离器 数值模拟 oil injected compressor oil-gas separator numerical simulation
作者简介 冯健美(1976-),女,讲师.
  • 相关文献

参考文献5

  • 1CHENG Gang, YAN Liyung, ZHOU Hua. The oil structure optimization by the use of CFD in the oil injection twin-screw compressor [C]//International Compressor Engineering Conference.West Lafayette, Indiana, USA. Purdue University, 2004:1-7.
  • 2EASTWICK C, HIBBERD S, SIMMONS K.Using CFD to improve aero engine air/oil separator design [J]. Pressure Vessels and Piping Division PVP, 2002, 448(1) : 215-220.
  • 3WILLENBORG K, KLINGSPORN M, TEBBY S. Experimental analysis of air/oil separator performance [C]//Proeeedings of the ASME Turbo Expo, Part B: Power for Land, Sea, and Air. New York, USA: ASME, 2006: 1495-1506.
  • 4周华,孙为民,夏南.CFD技术在油气分离器改型设计中的应用[J].水动力学研究与进展(A辑),2004,19(z1):926-929. 被引量:14
  • 5冯健美,畅云峰,屈宗长,姚建国.油气分离器内油滴运动轨迹的数值模拟[J].西安交通大学学报,2006,40(7):771-775. 被引量:16

二级参考文献6

  • 1[2]CROWE C T, CHUNG J N. TROUTT T.R. Particle mixing in free shear flows[J]. Progress in Energy and Combustion Science, 1988, 14(3): 171-194.
  • 2[3]CHENG Gang, YAN Li-yung, ZHOU Hua. The oil vessel structure optimization by the use of CFD in the oil injection twin-screw compressor[J]. International Compressor Engineering Conference at Purdue, 2004, (July): 12-15.
  • 3Cheng Gang,Yan Liyung,Zhou Hua.The oil vessel structure optimization by the use of CFD in the oil injection twin-screw compressor[C]∥ International Compressor Engineering Conference at Purdue.Purdue,U.S.A.:Purdue University,2004:1-7.
  • 4Eastwick C,Hibberd S,Simmons K.Using CFD to improve aero-engine air/oil separator design[J].American Society of Mechanical Engineers:Pressure Vessels and Piping Division (Publication) PVP,2002,448 (1):215-220.
  • 5Saffman P G.The lift on a small sphere in a slow shear flow[J].J Fluid Mech,1965,22:385-400.
  • 6陆耀军,周力行,沈熊.油滴在液-液旋流分离中的随机轨道数值模拟[J].力学学报,1999,31(5):513-520. 被引量:32

共引文献27

同被引文献88

引证文献13

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部