期刊文献+

2-DOF精密定位平台的几何误差分步辨识方法 被引量:1

Multiple-Step Error Identification Method of a 2-DOF Precision Positioning Platform
在线阅读 下载PDF
导出
摘要 针对一种2-DOF精密定位平台,基于误差迭代法与最小二乘法,提出一种几何误差分步辨识方法.对于给定的期望末端位置,采用迭代法计算出实际的主动关节位置,同时基于含有误差的精确的运动学逆解方程计算期望的主动关节位置,建立几何误差辨识方程;采用最小二乘法求解运动学模型中包含的所有几何误差.采用这种方法,只需测量末端平台沿x轴和y轴方向的位置误差,即可辨识各种几何误差以及末端平台沿z向的转动误差.实验结果表明,采用提出的几何误差分步辨识方法可有效补偿平台在平面内的位置误差,使其标定后的绝对定位误差小于6,μm. Based on error iterative method and least-square method, a multiple-step error identification method was presented for a 2-DOF precision positioning platform. For the given desired end position, the actual position of driving joints was obtained based on error iterative method, simultaneously, the desired position of driving joints was computed by inverse kinematic equations containing errors to build geometric error identification equations. And then the lease-square method could be used to get all geometric errors contained in kinematic equations. Applying this method, all geometric errors and rotation error of z direction of end could be identified, just by measuring position errors of x and y directions of end. Experimental results indicate that the proposed method can effectively compensate position errors of platform in Oxy plane with the absolute position error of the calibrated platform less than 6 μm.
出处 《纳米技术与精密工程》 EI CAS CSCD 2008年第3期202-206,共5页 Nanotechnology and Precision Engineering
基金 国家重点基础研究发展计划(973)资助项目(2003CB716202) 教育部"机器人机电一体化技术"创新团队项目
关键词 精密定位平台 误差辨识 迭代法 最小二乘法 分步辨识法 precision positioning platform error identification iterative method least-square method multiple-stepidentification method
作者简介 通讯作者孙立宁(1964-),男,博士,教授.lnsun@hit.edu.cn.
  • 相关文献

参考文献1

二级参考文献2

  • 1Zhuang,H.Calibration of Stewart platform and other parallel manipulators by minimizing inverse kinematic residual, J[].Journal of Robotic Systems.1998
  • 2Schellekens,P.Design for precision: Current status and trends[].CIRP Annals.1998

共引文献9

同被引文献10

  • 1王学影,刘书桂,王斌,张国雄.关节臂式柔性三坐标测量系统的数学模型及误差分析[J].纳米技术与精密工程,2005,3(4):262-267. 被引量:21
  • 2Oner Y, Cetin E, Ozturk H K, et al. Design of a new three- degree of freedom spherical motor for photovoltaic-tracking systems [J]. Renewable Energy, 2009, 34 (12) : 2751- 2756.
  • 3Shigeki T, Shigeru S, Zhang G Q, et al. Multi degree of freedom spherical ultrasonic motor [ C ]//Proceedings of the IEEE International Conference on Robotics and Automation. Nagoya, Japan, 1995:2935-2940.
  • 4Ter F K, Dinh H D, Friend J, et al. Triple degree-of-freedom piezoelectric ultrasonic micromotor via flexural-axial coupled vibration [ J ]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56( 8 ) : 1716- 1724.
  • 5Vasiljev P, Borodinas S, Bareikis R, et al. The square barshaped multi-DOF ultrasonic motor [ J ]. Journal of Electroceramics, 2008, 20(3/4): 231-235.
  • 6Zhang M H, Guo W, Sun L N. A multi-degree-of-freedom ultrasonic motor using in-plane deformation of planar piezoelectric elements [ J ]. Sensors and Actuators A : Physical, 2008, 148(1) :193-200.
  • 7Aoyagi M, Beeby S P, White N M. A novel multi-degree-of- freedom thiek-film ultrasonic motor [ J ]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2002, 49(2) : 151-158.
  • 8Takemura K, Ohno Y, Maeno T. Design of a plate type multi-DOF ultrasonic motor and its driving characteristics [ J]. IEEE/ASME Transactions on Mechatronics, 2004, 9 ( 3 ) : 474-480.
  • 9Malgaca L, Karagillle H. Numerical and experimental study on integration of control actions into the finite element solu- tions in smart structures [ J ]. Shock and Vibration, 2009, 16(4) : 401-415.
  • 10Malgaea L, Karagiille H. Simulation and experimental analy- sis of active vibration control of smart beams under harmonie excitation [ J ]. Smart Structures and Systems, 2009, 5 ( 1 ) : 55-68.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部