摘要
基于特征集的选择、核函数参数的优化对支持向量机(SVM)模型的预测性能有着重要的影响,提出了一个粒子算法-支持向量机(PSO-SVM)模型.该模型采用PSO对特征集和核函数参数同时进行优化,从而提高SVM模型的预测结果.将所提出的PSO-SVM模型应用到财务危机预警中,取得了较佳的预测结果.
As feature subset selection and parameters are important for the performance of SVM-based model, a PSO-SVM model was provided which uses particle swarm optimization (PSO) to optimize both a feature subset and parameters of SVM simultaneously so as to improve the prediction result. Finally, the PSO-SVM model was applied to bankruptcy prediction, which shows a better performance than pure SVM- based model.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2008年第4期615-620,共6页
Journal of Shanghai Jiaotong University
关键词
财务危机预警
粒子算法
支持向量机
bankruptcy prediction
particle swarm optimization(PSO)
support vector machine(SVM)
作者简介
彭静(1974-),女,重庆人,博士生,研究方向为财务管理.电话(Tel.):0755-82841112;E-mail:pp334@szlib.gov.cn