期刊文献+

一种基于线性SVM的级联分类器的构造方法 被引量:1

Linear SVM based construction of cascade detectors
在线阅读 下载PDF
导出
摘要 为了对目标进行快速的检测,提出了一种新的基于支持向量机的级联式分类器的构造方法。该级联分类器由若干个线性SVM弱分类器构成,结构简单,分类时间极快。针对级联结构中的每个节点的训练给出了一个新的SVM框架下的二次规划模型,这使得每个节点都有较高的正样本检测率和适当的负样本错检率。实际的实验结果表明,与经典非线性SVM分类器相比,这种分类器在保持SVM较强泛化性能的优点的同时,在检测效率方面更是具有明显的优势。 To detect objects quickly,a new method is presented to construct a cascade of SVM classifiers. The classifier which contains several weak linear SVM classifiers is simple to understand and is extremely efficient. The learning problem of every node in the cascade structure is described as a new quadratic programming problem in the framework of SVM, which makes every linear classifier achieve very high detection rate but only moderate false positive rate. The real experiments show that this method enjoys good generalization capacity and much fast speed compared with the traditional SVMs.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第14期39-41,53,共4页 Computer Engineering and Applications
基金 国家自然科学基金重大项目(the Grand National Natural Science Foundation of China under Grant No.60234030)
关键词 级联 目标检测 支持向量机(SVM) cascade object detection Support Vector Machine (SVM)
作者简介 安平(1984-),女,硕士研究生,研究方向为机器学习; 吴涛(1975-),男,副教授,研究方向为机器学习与图像处理; 贺汉根(1943-),男,教授,博士生导师,研究方向为智能系统,
  • 相关文献

参考文献6

  • 1Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2001.
  • 2Wu Jian-xin, Mullin M D, Rehg J M. Linear asymmetric classifier for cascade detectors [ C ]//Proceedings of the 22nd International Conference on Machine Learning,Bonn,Germany,2005:988-995.
  • 3Romdhani S, Torr P, Scholkopf B, et al. Efficient face detection by a cascaded support-vector machine expansion [ J ]. Pattern Recognition, 2004,3175:62-70.
  • 4马勇,丁晓青.基于层次型支持向量机的人脸检测[J].清华大学学报(自然科学版),2003,43(1):35-38. 被引量:28
  • 5Ravindran S, Anderson D V, Rehg J. Cascade jump support vector machine classifiers [ C ]//2005 IEEE Workshop on Machine Learning for Signal Processing,2005,28 : 135-139.
  • 6Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..

二级参考文献6

  • 1Yang G Z,Huang T S. Human face detection in a complex background [J]. Pattern Recognition,1993,27: 53-63.
  • 2Moghaddam B,Pentland A D. Probabilistic visual learning for object representation [J]. IEEE Trans PAMI,1997,19(7): 696-710.
  • 3Sung K,Poggio T. Example-based learning for view-based human face detection [J]. IEEE Trans PAMI,1998,20(1): 39-51.
  • 4Rowly H A,Baluja S,Kanade T. Neural network-based face detection [J]. IEEE Trans PAMI,1998,20(1): 23-38.
  • 5Vapnik V N. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag,1995.
  • 6Osuna E,Freund R. Training Support Vector Machines: an Application to Face Detection [A]. Proc of Computer Vision and Pattern Recognition [C]. San Juan,Puerto Rico: IEEE Computer Soc. 1997: 130-136.

共引文献198

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部