期刊文献+

不同干燥法掺铈超细氧化锆粉体的制备及表征 被引量:2

Preparation and Characterization of Ultrafine ZrO_2-Doped CeO_2 Powders along Different Routes of Drying in Co-Precipitations
在线阅读 下载PDF
导出
摘要 以ZrOCl_2·8H_2O,Ce(NO_3)_3·6H_2O为起始原料,氨水为沉淀剂,用共沉淀法结合喷雾干燥、真空冷冻干燥和超临界流体干燥技术制备了铈稳定四方氧化锆纳米级超微粉体,用热重-差示扫描量热计(TG-DSC)、X射线衍射分析仪(XRD)、物理吸附仪(Autosorb-MP-1)等仪器就制备方法对粉体的表面、孔径分布、晶粒尺寸和相对结晶度等性能进行了研究,结果表明:3种方法制得的初始粉体的颗粒尺寸分别为6.19,7.05和2.27 nm,比表面积分别为162.88,143.00,444.50 m^2/g。从室温到900℃,随着煅烧温度的提高,SPD法和VFD法制备的试样颗粒度显著粗化,而SCFD法制备的粉体粒度粗化则较慢。粉体材料的晶化温度、堆密度、相对结晶度和孔体积随制备方法的不同而有较大差异。 The reaction of ZrOCl2·8H2O and Ce(NO3)3·6H2O with ammonia as the precipitant yielded nanometer-sized ceria stabilized zirconia powders by coprecipitation via spray drying, vacuum freezing and supercritical fluid drying processes. The effects of the different drying routes on the surface structures, pore size distribution, crystal size and relative crystallinity of the powders were investigated based on the measurements using thermogravimetry-differential scanning calorimeter (TG-DSC), X-ray diffraction (XRD) and physical adsorptions apparatus (Autosorb-MP-1). The results showed that the particle sizes of the powders from the SPD, VFD and SCFD methods were 6.19, 7.05, 2.27 nm respectively and their specific surface areas were 162.88, 143.00, 444.50 m^2/g, respectively. The particles produced by SPD and VFD increased with the increasing calcination temperatures from room temperature to 900℃. The crystallization temperature, apparent density, crystallinity and pore volume of the powders from the different drying were processes showed also different.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2008年第A01期813-816,共4页 Rare Metal Materials and Engineering
基金 濮耐高温科学研究专项基金资助(2006083108)
关键词 超细氧化锆粉体 共沉淀 超临界流体干燥 喷雾干燥 真空冷冻干燥 ultrafine ceria coprecipitation super critical fluid spray drying vacuum freeze
作者简介 贺中央,男,1966年生,博士研究生,高级工程师,北京科技大学材料与工程学院,电话:010-62332666,E-mail:ref1988@126.com
  • 相关文献

参考文献5

二级参考文献17

  • 1程健.超临界流体精密分离[J].精细化工,1994,11(6):37-41. 被引量:10
  • 2[1]Lok B M, Messina C A, Patton R L, et al.US 4440871, 1982.
  • 3[2]Prakash A M, Unnlkrishnan S. J.Chem.Soc.Faraday Trans., 1994, 90: 2291
  • 4[7]Briend M, Vomscheid R, Peltre M J, et al. J. Phys.Chem., 1995, 99: 8270
  • 5[8]Ashtekar S, Chilukuri S V V, Chakrabarty D K. J.Phys.Chem., 1994, 98: 4878
  • 6[9]Narchese L, Frache A, Gianotti E. et al.Micro.Meso.Mater., 1999, 30: 145
  • 7[10]Tan J, Liu Z M, Bao X H. et al.Micro.Meso.Mater., 2002, 53: 97
  • 8[11]Borade R B, Clearfield A A.J.Mole.Catal., 1994, 88: 249
  • 9[13]Watanabe Y, Koiwai A, Takeuchi H. et al.J.Catal., 1993, 143: 430
  • 10[4]张镜澄主编(ZHANG Jingcheng ed). 超临界流体萃取(Supercritical Fluid Extraction)[M]. 北京:化学工业出版社(Beijing:Chemistry Industry Press), 2000.

共引文献43

同被引文献28

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部