期刊文献+

具有固定延迟平滑的交互多模型概率数据互联算法 被引量:3

Interacting Multiple Model Fixed Lag Smoothing Probabilistic Data Association Algorithm
在线阅读 下载PDF
导出
摘要 为了提高杂波环境下跟踪机动目标的跟踪精度,文中将交互多模型概率数据互联(IMMPDA)和固定延迟平滑(LS)思想相结合,提出了一种具有固定延迟平滑的IMMPDA(IMM-LS-PDA)算法,通过引入延迟,增广了目标的状态向量,使得目标的固定延迟平滑状态估计更加准确。仿真结果表明,在杂波环境下对机动目标进行跟踪,单纯的IMMPDA算法的跟踪误差很大,并且在转弯机动处,误差出现峰值,算法的平稳性较差;而在进行固定延迟平滑后,算法的跟踪精度有了明显的提高。 The concepts of interacting multiple model probabilistic data association (IMMPDA) algorithm and fixed lag smoothing(LS) were integrated in this paper in order to improve tracking precision of maneuvering target under clutter and interacting multiple model fixed lag smoothing probabilistic data association(IMM-LS-PDA) algorithm was deduced, in which target state vector was generalized by introducing lag so that the fixed lag smoothing state estimation of target was more accurate. Simulation results show tracking error of standard IMMPDA algorithm is very large, especially at maneuvering turn of target, the error reaches peak value, meanwhile the stability of IMMPDA is poor; while IMM-LS-PDA algorithm has quite better tracking precision.
作者 朱志宇
出处 《弹箭与制导学报》 CSCD 北大核心 2008年第2期193-196,201,共5页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 船舶行业国防预研基金项目资助
关键词 交互多模型概率数据互联(IMMPDA) 数据关联 机动目标 固定延迟 interacting multiple model probabilistic data association data association maneuvering target fixed lag smoothing
作者简介 朱志宇(1971-).男.江苏扬州人.副教授.博士,研究方向:智能控制.信号处理。
  • 相关文献

参考文献11

  • 1Kirubarajan T,Bar-shalom Y.IMMPDA for radar management and tracking benchmark with ECM[J].IEEE Trans on Aerospace and Electronic Systems,1998,34(4):1115-1132.
  • 2MR Chummun.Multi-sensor tracking of a maneuvering target in clutter using IMMPDA fixed-Lag smoothing[J].IEEE Trans on Aerospace and Electronic Systems,2000,36(3):983-991.
  • 3H A P Blom,E A Bloem.Probabilistic data association avoiding track coalescence[J].IEEE Trans on Auto Control,2000,45(2):247-259.
  • 4H A P Blom,E A Bloem.Combining IMM and JPDA for tracking multiple target maneuvering targets in clutter[C]// In Proc of 5th International Conf.on Information Fusion,Annapolis,MD,2002:705-712.
  • 5Hong L,CuiN Z.An interacting multipattern probabilistic data association(IMMPDA) algorithm for target tracking[J].IEEE Trans on Automatic Control,2001,46(8):1223-1236.
  • 6M R Chummun,T kirubarajan.Fast data association using multidimensional assignment with clustering[J].IEEE Trans on Aerospace and Electronic Systems,2001,37(3):898-910.
  • 7Johnston L A.An improvement to the interacting multiple model(IMM) algorithm[J].IEEE Trans on Signal Processing,2002,49(l2):2902-2923.
  • 8A Logothetis,V Krishnamurthy,J Holst.A Bayesian EM algorithm for optimal tracking of a maneuvering target in clutter[J].IEEE Trans on Signal processing,2002,82(2002):473-490.
  • 9乔向东 ,王宝树 ,李涛 ,华冠文 .EM算法在杂波环境下机动目标跟踪中的应用研究[J].电子与信息学报,2004,26(6):971-978. 被引量:1
  • 10Graham W.Pulford,Barbara F LA Scala.MAP estimation of target maneuver sequence with the expectation-maximization algorithm[J].IEEE Trans on Aerospace and Electronic Systems,2002,38(2):367-377.

二级参考文献8

  • 1Bar-Shalom Y,Chang K C,Blom H A P.Automatic Track Formation in Clutter with A Recursive Algorithm.MA,USA,Artech House INC,1990:25-42.
  • 2Blackman S S,Bush M T,Populi R F.IMM/MHT tracking and data association for benchmark problem.Proc.of American Control Conference,Seattle,WA,1995:2606-2610.
  • 3Lang Hong,Ningzhou Cui,Shan Cong.Devert Wicker,An interacting multipattern data association (IMPDA) tracking algorithm.Signal Processing,1998,71(4):55-77.
  • 4Logothetis A,et al..A Bayesian EM algorithm for optimal tracking of a maneuvering target in clutter.Signal Processing,2002,82(3):473-490.
  • 5Avitzour D.A maximum likelihood approach to data association.IEEE Trans.on AES,1992,AES-28(2):560-566.
  • 6Dempster A,et al..Maximum likelihood from incomplete data viaEM algorithm.J.Roy.Stat.Soc.,1977,Sec39(12):1-38.
  • 7Johnston L A,et al..An improvement to the interacting multiple model (IMM) algorithm.IEEE Trans.on Signal Processing,2002,SP-49(12):2909-2923.
  • 8潘泉,刘刚,戴冠中,张洪才.联合交互式多模型概率数据关联算法[J].航空学报,1999,20(3):234-238. 被引量:25

同被引文献36

  • 1王永成,王宏飞,杨成梧.目标属性信息相关时融合识别的实现方法[J].兵工学报,2005,26(3):338-342. 被引量:8
  • 2朱志宇,姜长生,张冰.多传感器多机动目标跟踪方法研究进展[J].现代防御技术,2005,33(5):60-66. 被引量:2
  • 3李良群,姬红兵.基于最大熵模糊聚类的快速数据关联算法[J].西安电子科技大学学报,2006,33(2):251-256. 被引量:15
  • 4耿文东,刘红娅,王元钦,蔡庆宇.基于群目标的多目标关联算法研究[J].系统仿真学报,2007,19(15):3510-3512. 被引量:7
  • 5M Feo,A Granziano,R Miglioli,et al.IMM-JPDA versus MHT and Kalman filter with NN correlation:performance comparison[J].IEEE Proc.Radar,Sonar Navigation,1997,144(2):49-56.
  • 6E Mazor,A Averbuch,Y Bar Shalom,et al.Interacting multiple model methods in target tracking[J].IEEE Trans.Aerosp.Electron.Syst.1996,34(1):103-123.
  • 7Kaplan E D, Hegarty C J. Understanding GPS principles: and applications. New York: Spring Press, 2007: 105-126.
  • 8Oshman Y. Robust navigation using the global positioning system in the presence of spoofling. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 95-104.
  • 9Rao S K. Pseudo-linear estimator for bearings-only passive target tracking. IEE Proceedings-Radar, Sonar and Navi- gation, 2001, 148(1): 16-22.
  • 10Wang H, Kirubarajan T. Precision large scale air traffic surveillance using IMM/assignment estimators. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1) : 255-266.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部