期刊文献+

支持向量机及其在密闭鼓风炉故障诊断中的应用 被引量:2

Support Vector Machine and its Application to Fault Diagnosis for Lead-zinc Smelting Furnace
在线阅读 下载PDF
导出
摘要 针对密闭鼓风炉故障诊断中难以获得大量故障数据样本以及特征提取和诊断知识获取困难等不足,提出了应用支持向量机(SVM)进行故障诊断的新方法.采用改进"1对其余"算法构建多个SVM,利用可靠性数据分析技术中一些基本概念处理原始样本数据作为特征向量,输入到由多个SVM构成的多类分类器中进行故障分类.经实验证明,该方法简单,重复训练量少,训练、分类速度快,准确度高. Aiming at the difficulty in getting adequate fault samples, extracting eigenvectors and acquiring diagnosis knowledge in fault diagnosis for the lead-zinc imperial smelting furnace, a novel method for the furnace fault diagnosis based on support vector machine (SVM) is put forward. An improved 'one to others' algorithm is introduced to construct the multi-class SVM classifier. Some basic conceptions of data reliability analysis are adapted to preprocess the data as the input of the multi-class classifier to identify faults. The method is simple and has little repeated training amount. And the excellent performance on training speed and accuracy has been verified in the real application.
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第4期777-781,共5页 Journal of Chinese Computer Systems
基金 国家“九七三”项目(2002CB312200)资助
关键词 支持向量机 可靠性数据分析 故障诊断 SVM多类分类器 support vector machine data reliability analysis fault diagnosis multi-class SVM classifier
作者简介 蒋少华,女,1966年生,博士研究生,高级工程师,研究方向为智能控制、复杂过程故障诊断等;E-mail:sgjsh66@hotmail.com 桂卫华,男,1950年生,研究方向为复杂过程的建模、优化及故障诊断等; 阳春华,女,1965年生,教授,博士生导师,研究方向为复杂过程优化控制、故障诊断等.
  • 相关文献

参考文献4

二级参考文献46

  • 1叶文,吕勇哉,沈平.时态覆盖集诊断模型TGSC[J].计算机学报,1994,17(5):347-353. 被引量:2
  • 2黄苏南,邵惠鹤.基于信息的专家系统理论及应用[J].控制与决策,1995,10(2):119-126. 被引量:1
  • 3周取定 孔令坛.铁矿石造块理论及工艺[M].北京:冶金工业出版社,1989..
  • 4Wen,X,Liu,Z.J,Zhang,H.Y.An Approach to Failure Detection with Model Parameter Uncertainties[C].IFAC Symposium on Fault Detection,Supervision and Safety for Technical Processes,Hull,U.K.,1997.
  • 5Wu.M,Tang,Z.H.,Gui,W.H.Expert Fault Diagnosis System for Leaching Process in Zinc Hydro-metallurgy[J].Transaction on Nonferrous Metals Society of China,2000,10(5):699-703.
  • 6Wu,M.,Nakano,She,J.H.A Model-based Expert Control System for the Leaching Process in Zinc Hydrometallurgy[J].Expert Systems with Applications,1999,16(1):135-143.
  • 7Wu,M.,Gui,W.H.,Shen,D.Y.,Wang,Y.L.Expert Fault Diagnosis Using Rule Models with Certainty Factors[C].Proceedings of the 3rd World Congress on Intelligent Control and Automation,2000.
  • 8Wu,M.,Tang,Z.H.,Gui,W.H.Expert Fault Diagnosis System for Leaching Process in Zinc Hydro-metallurgy[J].Transaction on Nonferrous Metals Society of China,2000,10(5):699-703.
  • 9Wu,M.,Tang,Z.H.,Gui,W.H.Expert Control Strategy Using Neural Networks for Electrolytic Zinc Process[J].Transaction on Nonferrous Metals Society of China,2000,10(4):555-560.
  • 10刘晓颖 桂卫华 朱爽 等.基于神经网络的动力锅炉故障诊断专家系统[J].基础自动化,2001,8:55-57.

共引文献53

同被引文献10

  • 1范昕炜,杜树新,吴铁军.粗SVM分类方法及其在污水处理过程中的应用[J].控制与决策,2004,19(5):573-576. 被引量:15
  • 2郭小荟,马小平.基于支持向量机的提升机制动系统故障诊断[J].中国矿业大学学报,2006,35(6):813-817. 被引量:25
  • 3PUNAL A, ROCA E, LEMA J M. An expert system for monitoring and diagnosis of anaerobic wastewater treatment plants [J].Water Research,2002,36 (10) :2656-2666.
  • 4Pawlak Z.Rough set approach to knowledge-based decision support [J].European Journal of Operational Research, 1997,19 (4) :48- 57.
  • 5Pawlak Z.Rough Sets: Theoretical Aspects of Reasoning About Data [ M ].Dordrecht : Kluwer Academic Publishers, 1991.
  • 6Dubois D, Prade H.Putting fuzzy sets and rough sets together[J]. Intelligent Decision Support, 1992,23 ( 1 ) :203-232.
  • 7Shen Q, Jensen R.Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring[J]. Pattern Recognition, 2004,37 (7) : 1351 - 1363.
  • 8Jensen R,Shen Q. Semantics-preserving dimensionality reduction: rough and fuzzy-rough based approaches [J].IEEE Transactions on Knowledge and Data Engineering,2004,16(12) :1457-1471.
  • 9李晓东,曾光明,蒋茹,李峰,石林,梁婕,韦安磊,黄国和.改进支持向量机对污水处理厂运行状况的故障诊断[J].湖南大学学报(自然科学版),2007,34(12):68-71. 被引量:6
  • 10李运红,张湧涛,裴未迟.基于小波包-Elman神经网络的电机轴承故障诊断[J].河北理工大学学报(自然科学版),2008,30(4):81-85. 被引量:6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部