期刊文献+

引入动量项的正交小波变换盲均衡算法 被引量:28

Momentum Term and Orthogonal Wavelet-based Blind Equalization Algorithm
在线阅读 下载PDF
导出
摘要 针对常数模算法(CMA)收敛速度慢的缺点,推导了均衡器的正交小波表示式及正交变换矩阵的表示式,在分析正交小波变换常数模盲均衡算法(WTCMA)的基础上,将动量算法引入WTCMA中,得到了一种引入动量项的正交小波变换常数模盲均衡新算法(MWTCMA)。该算法将基于小波变换的常数模盲均衡算法和动量项相结合,通过归一化的正交小波变换和引入动量项来提高收敛速度。同时给出了算法的收敛条件,并对算法计算量进行了分析。水声信道仿真结果表明:与基于正交小波变换的常数模盲均衡算法(WTCMA)及常规常数模算法(CMA)相比,新算法具有更快的收敛速度,从而能更有效地实现信号与噪声的分离以及信号的实时恢复。 Aiming at the slow convergence rates of Constant Modulus Algorithm (CMA), the expression of the equalizer with orthogonal Wavelet and orthogonal wavelet transform matrix was deduced. Through analyzing orthogonal Wavelet Transform-based CMA (WTCMA) and introducing momentum algorithm into WTCMA, a new Momentum term and orthogonal Wavelet Transform-based CMA(MWTCMA) was proposed. In this proposed algorithm, WTCMA was combined with momentum term, and the convergence rates of the proposed algorithm could be improved by normalizing orthogonal wavelet transform and adding to the momentum term. At the same time, the convergence condition and the computational quantity of the proposed algorithm were studied. Simulation tests with underwater acoustic channel indicate that the convergence rates of the proposed algorithm are faster than those of the CMA and the WTCMA. Accordingly, MWTCMA has better the performance of real time information retrieval and practicability.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第6期1559-1562,共4页 Journal of System Simulation
基金 全国博士学位论文作者专项资金资助项目(200753) 安徽理工大学硕博基金资助项目(均衡理论)
关键词 盲均衡 小波变换 动量 水声信道 收敛速度 blind equalization wavelet transform momentum underwater acoustic channel convergence rates
作者简介 韩迎鸽(1979-),女,陕西咸阳人,硕士生,研究方向为信号处理. 郭业才(1962-),男,安徽安庆人,教授,研究方向为水声信号处理、通信信号处理、高阶谱分析、系统仿真等。
  • 相关文献

参考文献8

二级参考文献23

  • 1[1]Cowan C F N,Grant P M.Adaptive filters.Englewood Cliffs:Prentice-Hall,NJ,1985.
  • 2[2]Treichler J R,Fijalkow I,Johnson C R.Fractionally spaced equalizers.IEEE SP Mag,1996,65~81.
  • 3[3]Qureshi S U H.Adaptive equalization.Proceedings of IEEE,1985,73(9):1349~1387.
  • 4[4]Proakis J G.Digital communication.3nd Ed.,New York:McGraw-Hill,1995.
  • 5[5]Shensa M.Wedding the A trous and mallt algorithms.IEEE Trans SP,1992,40:2464~2482.
  • 6[6]Olivier Rioal.A discrece-time multiresolution theory.IEEE Trans SP, 1996(8):63~67.
  • 7[7]Mueller K H,Spaulding D A.Cyclic equalization——a new rapidly converging equalization technique for synchronous data communication.BSTJ,1975,54:479~406.
  • 8[8]Daubichies I.Ten lectures on wavelets.Philadelphia:CBMS-NSF,SIAM,1992,(61).
  • 9[9]Tsatanis M K, Giannakis B B.Time-varying system identification and model validation using wavelets.IEEE Trans SP, 1993,41(12):3512~3523.
  • 10Matlab Help Document d Wavelet Toolbox(Dealing with Border Distortion) [ M/CD] :283 - 292.

共引文献36

同被引文献209

引证文献28

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部