期刊文献+

有向网络上单源多汇的最优连接问题 被引量:3

Optimal connection problem of single source multiple sinks on directed networks
在线阅读 下载PDF
导出
摘要 以信息需求系统为背景,研究有向网络上从一个顶点到若干顶点的连接方式,使总的连线长度为最小.这是最短路问题的推广,使用的方法是基于组合最优化的算法分析,包括NP-困难性及多项式可解情形.关于后一方面,若干约化规则起着重要作用.主要结果是得到序列平行图等典型图类的有效算法和一般图的启发式算法.目前的工作是为处理这样一个难解问题提供了一个基本的途径.更多的结构性质及典型算法值得进一步研究. This paper studies an optimal connection problem on a directed network that several vertices (sinks) are required to be connected from a given vertex (source) such that the total length of the linking arcs is minimized. This problem can be regarded as a generalization of the shortest path problem in digraphs. The method used in this paper is based on the algorithmic analysis of combinatorial optimization, including the NP-hardness and polynomial solvable cases. For the latter aspect, some reduction rules play an important role. The main results of this paper are to establish effective algorithms for some special digraphs, such as series-parallel digraphs. Also, a heurist algorithm for general graphs is presented. The present work is to provide a basic approach for dealing with such an intractable problem. More structural properties and typical algorithms are worthy of further study.
作者 林浩 皮军德
出处 《系统工程学报》 CSCD 北大核心 2008年第1期16-21,共6页 Journal of Systems Engineering
基金 国家自然科学基金(10671183) 河南工业大学校科研基金(07XTC037)
关键词 网络优化 信息需求 有向连接 多项式算法 network optimization information requirement directed connection polynomial algorithm
作者简介 林浩(1974-),男,广东台山市人,硕士,讲师,研究方向:图论与组合最优化,Email:Linhao@haut.edu.cn; 皮军德(1973-),男,河南周口市人,硕士,讲师,研究方向:图论与组合最优化.
  • 相关文献

参考文献7

  • 1Yu P L, Zhang D. Marginal analysis for competence set expansion[ J]. Journal of Optimization Theory and Applications, 1993, 76(1): 87-109.
  • 2Li H L, Yu P L. Optimal competence set expansion using deduction graphs[ J ]. Journal of Optimization Theory and Applications, 1994, 80(1) : 75-91.
  • 3Li J M, Chiang C I, Yu P L. Optimal multiple stage expansion of competence set[J]. European Journal of Operational Research, 2000, 120(3): 511-524.
  • 4林浩.信息需求网络上最优连接问题[J].系统工程学报,2004,19(4):427-430. 被引量:4
  • 5Garey M R, Johnson D S. Computers and Intracibility : A Guide to the Theory of NP-completeness [ M 1. San Francisco : W. H. Freeman and Company, 1979. 208-209.
  • 6Papadimitriou C H, Steiglitz K. Combinatorial Optimization: Algorithms and Complexity[ M ]. New Jersey: Prentice-Hall, 1982. 289-298.
  • 7Valdes J, Tarjan R E, Lawer E L. The recognition of series-parallel digraphs [ J ]. SIAM J. Computing, 1982, 11 (2) : 298-313.

二级参考文献10

  • 1朱永津,刘振宏.On the shortest arborescence of a directed graph[J].中国科学,1965,(14):1396-1400.
  • 2[1]Yu P L, Zhang D. A foundation for competence set analysis[J]. Mathematical Social Sciences, 1990, 20: 251-299.
  • 3[2]Yu P L, Zhang D. Optimal expansion of competence set and decision support[J]. Information Systems and Operational Research,1992, 30: 68-84.
  • 4[3]Yu P L, Zhang D. Marginal analysis for competence set expansion[J]. Journal of Optimization Theory and Applications, 1993, 76:87-109.
  • 5[4]Li H L, Yu P L. Optimal competence set expansion using deduction graph[J]. Journal of Optimization Theory and Applications,1994, 80: 75-91.
  • 6[5]Li J M, Chiang C I, Yu P L. Optimal multiple stage expansion of competence set[J] . European Journal of Operational Research,2000, 120: 511-524.
  • 7[6]Papadimitriou C H, Steiglitz K. Combinatorial Optimization: Algorithms and Complexity[ M ]. New Jersey:Prentice-Hall, 1982.
  • 8[7]Bondy J A,Murty U S R. Graph Theory with Applications[M]. New York: The Macmillan, 1976.
  • 9[8]Hu T C. Combinatorial Algorithms[ M ]. Massachusetts: Addison-Wesley, 1982.
  • 10[9]E·米涅卡.网络和图的最优化算法[M].北京:中国铁道出版社.1984.

共引文献3

同被引文献29

  • 1高尚.解旅行商问题的混沌蚁群算法[J].系统工程理论与实践,2005,25(9):100-104. 被引量:44
  • 2王航平.图的Hamilton问题的着色否定方法[J].中国计量学院学报,2005,16(3):218-221. 被引量:7
  • 3杨烜会,刘震宇.含结点等待费用的离散时变最短路径[J].系统工程理论与实践,2007,27(1):113-118. 被引量:6
  • 4韩伟一,王铮.负权最短路问题的新算法[J].运筹学学报,2007,11(1):111-120. 被引量:13
  • 5刘桂枝,高太平.带二次参数赋权的多阶段网络最短路算法[J].系统工程理论与实践,2007,27(7):92-97. 被引量:1
  • 6Jolai F, Ghanbari A. Integrating data transformation techniques with Hopfield neural networks for solving trav- elling salesman problem[J]. Expert Systems with Applications, 2010, 3?(?): 5331-5335.
  • 7Fatih Tasgetiren M, Suganthan P N, Pan Q K. An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem[J]. Applied Mathematics and Computation, 2010, 215(9): 3356-3368.
  • 8Duchenne E, Laporte G, Semet F. The undirected m-peripatetic salesman problem: Polyhedral results and new algorithms[J]. Operations Research, 2007, 55(5): 949 965.
  • 9Ibrahim M S, Maculan N, Minoux M. A strong flow-based formulation for the shortest path problem in digraphs with negative cycles[J]. International Transactions in Operational Research, 2009, 16(3): 361-369.
  • 10Peer S K, Sharma D K. Finding the shortest path in stochastic networks[J]. Computers & Mathematics with Applications, 2007, 53(5): 729-740.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部