摘要
以信息需求系统为背景,研究有向网络上从一个顶点到若干顶点的连接方式,使总的连线长度为最小.这是最短路问题的推广,使用的方法是基于组合最优化的算法分析,包括NP-困难性及多项式可解情形.关于后一方面,若干约化规则起着重要作用.主要结果是得到序列平行图等典型图类的有效算法和一般图的启发式算法.目前的工作是为处理这样一个难解问题提供了一个基本的途径.更多的结构性质及典型算法值得进一步研究.
This paper studies an optimal connection problem on a directed network that several vertices (sinks) are required to be connected from a given vertex (source) such that the total length of the linking arcs is minimized. This problem can be regarded as a generalization of the shortest path problem in digraphs. The method used in this paper is based on the algorithmic analysis of combinatorial optimization, including the NP-hardness and polynomial solvable cases. For the latter aspect, some reduction rules play an important role. The main results of this paper are to establish effective algorithms for some special digraphs, such as series-parallel digraphs. Also, a heurist algorithm for general graphs is presented. The present work is to provide a basic approach for dealing with such an intractable problem. More structural properties and typical algorithms are worthy of further study.
出处
《系统工程学报》
CSCD
北大核心
2008年第1期16-21,共6页
Journal of Systems Engineering
基金
国家自然科学基金(10671183)
河南工业大学校科研基金(07XTC037)
关键词
网络优化
信息需求
有向连接
多项式算法
network optimization
information requirement
directed connection
polynomial algorithm
作者简介
林浩(1974-),男,广东台山市人,硕士,讲师,研究方向:图论与组合最优化,Email:Linhao@haut.edu.cn;
皮军德(1973-),男,河南周口市人,硕士,讲师,研究方向:图论与组合最优化.