期刊文献+

基于眨眼持续时间的司机疲劳检测方法 被引量:18

Detection Method of Driver Fatigue Based on Blink Duration
在线阅读 下载PDF
导出
摘要 利用红外敏感的摄像机获得司机脸部图像,通过可变性模板匹配的方法对眼睛进行定位,然后利用卡尔曼滤波的方法跟踪眼睛,得到司机的眨眼持续时间参数,以此为依据判断司机是否疲劳。主要研究了其中的图像处理方法——特征提取算法和眼睛定位、跟踪算法。实验结果证明,眨眼持续时间判断是否疲劳的有效指标。 This paper uses infrared camera to obtain the image of the driver's face and locate, their eyes with a deformable template in the image. It uses Kalman filter to track the eyes andobtain the parameters of the blink duration which are used to judge the fatigue of the driver, and researches the image processing methods in the algorithm including feature extraction, eyes location and tracking. Experimental results show that blink duration is an effective parameter to judge fatigue.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第5期201-203,206,共4页 Computer Engineering
关键词 眨眼持续时间 可变性模板 卡尔曼滤波 blink duration deformable template Kalman filter
作者简介 朱振华(1983-),男,硕士,主研方向:图像处理,模式识别,计算机视觉; E-mail:braveheart0418@163.com 吴晓娟,教授、博士生博师; 王磊,助教; 亓磊,硕士
  • 相关文献

参考文献5

  • 1周玉彬,俞梦孙.用红外图像实时跟踪和监测眼睛的方法[J].北京生物医学工程,2003,22(2):104-108. 被引量:13
  • 2王荣本,郭克友,刘锐,储江伟,初秀民.驾驶员驾驶行为监测中的面部定位方法的研究[J].公路交通科技,2003,20(2):96-99. 被引量:14
  • 3Wierwille W W, EUsworth L A, Wreggit S S, et al. Research on Vehicle-based Driver Status/Performance Monitoring, Development, Validation, and Refinement of Algorithms for Detection of Driver Drowsiness[EB/OL]. (2002-08-20). http://www.itsdocs.fhwa.dot. gov.
  • 4Saji H, Nakatani H. Deformable Templates for Tracking the Facial Components[C]//Proceedings of the 6th IEEE International Workshop on Robot and Human Communication. Sendai, Japan: [s. n.], 1997: 364.
  • 5Xie Xangdong, Sudhakar R, Zhuang Hanqi. Real-time Eye Feature Tracking from a Video Image Sequence Using Kalman Filter[J]. IEEE Transactions on Systems, Man and Cybernetics, 1995, 25(12): 1568.

二级参考文献18

  • 1[1]Haro A,Flickner M, Essa I.Detecting and tracking eyes by using their physiological properties,dynamics,and appearance.Proceedings IEEE CVPR 2000,Hilton Head Island,South Carolina,Jun 2000
  • 2[2]Morimoto C H,Koons D,Amir A,et al.Pupil detection and tracking using multiple. IBM Almaden Research Center,1998
  • 3[3]Ebisawa Y.Unconstrained pupil detection technique using two lightsources and the image difference method.Visualization and Intelli-gent Design in Engineering and Architecture,1995,79-89
  • 4[4]Ebisawa Y and Satoh S.Effectiveness of pupil area detection tech-niqueusing two light sources and image difference method.In Szeto A Y J.and Rangayan RM,editors,Proceedings of the 15th Annual Int.Conf.of the IEEE Eng.in Medicine and Biology Society,San Diego,CA,1993,1268-1269
  • 5[5]Dinges DF, Grace R. Perclos:a valid psychophysiological measure of alertness as assessed by psychomotor vigilance.Federal Highway Administration,Office of Motor Carriers,1998,Report No.FHWA-MCRT-98-006
  • 6[6]Grace R,Byrne V E,Legrand J M,et al.A drowsy driver detection system for heavy vehicles.Proceedings of the Digital Avionics Systems Conference (DASC),Belleview,Washington,1998,31:5
  • 7[7]Philip K,Roger J,John D.Development of driver alertness detection system using overhead capacitive sensor array.SAE Technical Paper Series 982292,SAE International,1998
  • 8[8]Heitmann A,Guttkuhn R,Aguirre A,et al.Technologies for the monitoring and prevention of driver fatigue.Proceedings of the First International Driving Symposium on Human Factor in Driver Assessment,Training and Vehicle Design,p81-86
  • 9[9]Wierville.Overview of research on driver drowsiness definitionand driver drowsiness detection.11th International Conference on Enhanced Safety of Vehicles,Munich 1994
  • 10[10]Ji Q,Hu R.3D Face pose estimation and tracking from a monocular camera.Image and Vision Computing 00,2002,1-13

共引文献25

同被引文献121

引证文献18

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部