期刊文献+

超高分子量聚乙烯/石墨包覆纳米铜复合导电材料研究 被引量:6

The Conductive Composite of UHMWPE/GECNP
在线阅读 下载PDF
导出
摘要 在NaBH4/EDA体系中还原CuCl2,石墨层间化合物合成了石墨包覆纳米铜复合填料(GECNP)。以GECNP为导电填料,采用球磨共混-热压成型工艺制备了超高分子量聚乙烯(UHMWPE)基复合材料。UHMWPE/GECNP复合材料的X射线衍射(XRD)分析表明:在制备过程中无新相生成;扫描电镜(SEM)观察发现:其微观结构均匀,GECNP以纳米片状分散于基体中,构成导电网络;有关导电性的研究表明:复合材料导电机制符合聚合物基复合材料的导电渗滤理论,渗滤阈值为8.766%,低于常规碳系填料。当GECNP体积浓度为12.8%时,体系电导率最高,为7.55S/cm,高于石墨纳米片填料。 Graphene encapsulated copper nanoparticles (GECNP) were synthesized by reducing the precursor of CuCl2 graphite intercalation compounds in ethylenediamine (EDA) solution of NaBH4. The composite of ultra-high molecular weight polyethylene (UHMWPE) were formed by using GECNP as filler through ball milling-mixture and hot-press molding technology. X-ray diffraction examination revealed that not any new phase was formed in the preparation process of UHMWPE/GECNP matrix. SEM observation found that the microstructure of composite was homogeneous;The nanosheets of GECNP were dispersed in the matrix of UHMWPE and formed a conductive net. The measurement results of conductance showed the conduction mechanism of UHMWPE/GECNP was according to the percolation theory of polymer matrix, the percolation threshold was 8. 766% ,and it was far smaller than that of common carbon fillers. The maximum conductivity was equal to 7.55S/cm and was higher than that of the graphite nanosheets filler.
出处 《塑料》 CAS CSCD 北大核心 2008年第1期43-46,24,共5页 Plastics
基金 湖北省自然科学基金项目资助(2004ABA090)
关键词 超高分子量聚乙烯 石墨 铜纳米粒子 电导率 UHMWPE graphite copper nanoparticle conductivity
作者简介 薛俊(1976-),女,硕士,讲师,主要从事功能纳米复合材料研究。 联系人:曹宏。
  • 相关文献

参考文献10

二级参考文献75

  • 1Narkis M,Lidor G,Vaxman A,et al. Innovative ESD thermoplastic composites structured through melt flow processing[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2000,23 (4): 239 - 245.
  • 2Rosner R B. Conductive materials for ESD applications:an overview[C]. Electrical Overstress/Electrostatic Discharge Symposium Proceedings, 2000, Sep 26- 28:121-131.
  • 3Narkis M, Ram A,Flashner F. Polyethylene/carbon black switching materials[J]. Journal of Applied Polymer Science, 1978,22:1163- 1165.
  • 4Abdel-Bary E M,Amin M,Hassan H H. Factors affecting electrical conductivity of carbon black-loaded rubber. Ⅱ.Effect of concentration and type of carbon black on electrical conductivity of SBR[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1979,17: 2163 -2172.
  • 5Miyasaka K,Watanabe K,Jojima E,et al. Electrical conductivity of carbon-polymer composites as a function of carbon content[J]. Journal of Materials Science, 1982,77:1610-1616.
  • 6Narkis M,Lidor G,Vaxnan A,et al. New injection moldable electrostatic dissipative (ESD) composites based on very low carbon black loadings[J]. Journal of Electrostatics,1999,47:201-214.
  • 7Tchoudakov R,Breuer O,Narkis M. Conductive polymer blends with low carbon black loading:polypropylene/polyamide [J]. Polymer Engineering and Science, 1996,36 (10) :1336-1346.
  • 8Sumita M,Abe H,Kayaki H,et al. Effect of melt viscosity and surface tension of polymers on the percolation threshold of conductive-particle-filled polymeric composites [J]. J Macromol Sci -Phys, 1986,B25 (1 &2): 171 - 184.
  • 9Sumita M,Sakata K,Asai S,et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black[J]. Polymer Bulletin, 1991,25: 265- 271.
  • 10Sumita M, Sakata K,Hayakawa Y,et al. Double percolation effect on the electrical conductivity of conductive particles filled polymer blends[J]. Colloid & Polymer Science, 1992,270:134- 139.

共引文献82

同被引文献154

引证文献6

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部