期刊文献+

中文观点挖掘中的主观性关系抽取 被引量:24

Subjective Relation Extraction in Chinese Opinion Mining
在线阅读 下载PDF
导出
摘要 本文所针对的具体任务是抽取评价词和目标对象之间的关联关系。所采用的方法是将同一句子中共现的评价词与评价对象作为候选集合,应用最大熵模型并结合词、词性、语义和位置等特征进行关系抽取。我们将关系抽取引入观点挖掘,所提出的方法一定程度上解决了指代消解以及评价对象遗漏的问题。实验结果表明该方法的F值比取最近评价对象的Baseline方法有了15%的提高,并且发现程度副词能够帮助提高主观性关系抽取的性能。 This paper presents a novel method to extract the subjective relationship between opinion-bearing terms and opinion targets. This method extracted the pairs of opinion-bearing terms and opinion targets as the candidate set, and then employed the maximum entropy model to combine lexical, part of speech, semantic and positional features derived from text. Our method incorporates relation extraction into opinion mining and solves the problem of coreference and omitting of opinion targets to some extent. The experiments showed that the F value of our method is 15% higher than that of Baseline which takes the nearest opinion target as the real target, Besides, the experiments found that the intensifiers can improve the performance of subjective relation extraction.
出处 《中文信息学报》 CSCD 北大核心 2008年第2期55-59,86,共6页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60503070 60673038)
关键词 计算机应用 中文信息处理 观点挖掘 关系抽取 最大熵 computer application Chinese information processing opining mining relation extraction maximumentropy
作者简介 章剑锋(1982-),男,硕士生,研究方向为自然语言处理; 张奇(1981-),男,博士生,研究方向为自然语言处理; 吴立德(1937-),男,教授,博导,研究方向为计算机软件和应用。
  • 相关文献

参考文献18

  • 1AL Berger, VJ Della Pietra, SA Della Pietra. A Maximum Entropy Approach to Natural Language Processing [J]. Computational Linguistics, 1996.
  • 2A Kennedy, D Inkpen. Sentiment Classification of Movie and Product Reviews Using Contextual Valence Shifters [A].Proceedings of FINEXIN-05, Workshop on the Analysis of Informal and Formal Information Exchange during Negotiations [C].
  • 3AM Popescu, O Etzioni. Extracting Product Features and Opinions from Reviews [ A]. Proceedings of EMNLP 2005 [C]. 2005.
  • 4Aron Culotta, Jeffrey Sorensen. Dependency Tree Kernels for Relation Extraction[A]. Proceedings of the 42nd Annual Meeting of the Association[C].
  • 5B Liu, M Hu, J Cheng. Opinion Observer: Analyzing and Comparing Opinions on the Web [A]. Proceedings of the 14th international conference on World Wide Web [C].
  • 6B Pang, L Lee, S Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques[A]. Proceedings of the ACL-02 conference on Empirical methods in natural language processing[C].
  • 7DanD Zelenko, CAA Richardella. Kernel Methods for Relation Extraction [J]. Journal of Machine Learning Research, 2003.
  • 8E Riloff, J Wiebe, T Wilson. Learning subjective nouns using extraction pattern bootstrapping[A]. Proceedings of the 7th CoNLL conference [C].
  • 9Jacob Cohen. A coefficient of agreement for nominal scale[J]. Educational and Psychological Measurement, 1960, 20: 37-46.
  • 10K Dave, S Lawrence, DM Pennock.. Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews[A]. Proceedings of the 12th international conference on World Wide Web[C].

同被引文献358

引证文献24

二级引证文献298

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部