期刊文献+

基于遗传神经网络的数字化渐进成形回弹预测 被引量:30

Incremental sheet NC forming springback prediction using genetic neural network
在线阅读 下载PDF
导出
摘要 针对传统BP神经网络具有易陷入局部极小等缺陷,采用遗传算法(GA)对BP神经网络(初始权值、阈值)进行了优化,将人工智能技术和激光扫描测量技术有机结合,建立了金属板材数字化渐进成形回弹预测的遗传神经网络模型,对计算结果与BP神经网络预测结果进行比较,表明遗传神经网络预测值与实测值之间具有很高的相关性和精确度,该模型可用于预测渐进成形工艺参数与回弹量之间的映射关系,为金属板材数字化渐进成形回弹量的预测开辟了一条新的途径. Artificial neural networks were introduced to the process of incremental sheet NC forming (ISF). There were some disadvantages in BP (backpro pagation) neural networks, such as easily falling into local minimum point, BP networks were optimized by genetic algorithm (GA). By combination of artificial intelligence technology with laser-scanning measuring, built was genetic neural network model for incremental sheet metal NC (numerical control) forming springback prediction. The calculated results were compared with those of traditional BP neural network. The results showed that the prediction precision was precise and the pertinence between the predicted GA-BP and measured values were considerably high. Thus, this model can be used to predicate the relation between the process parameters of ISF and springback and provides a new way to predicate the springback of ISF.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第1期121-124,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50175034)
关键词 渐进成形 回弹预测 遗传算法 BP神经网络 incremental sheet NC forming (ISF) springback prediction genetic algorithm BP neural network
作者简介 韩飞(1977-),男,博士研究生;武汉,华中科技大学材料成形及模具技术国家重点实验室(430074).E-mail:hanfei_hust@126.com
  • 相关文献

参考文献7

  • 1莫健华,叶春生,黄树槐,陈正迪,易振明.金属板料数控渐进成形技术[J].航空制造技术,2002,45(12):25-27. 被引量:41
  • 2Jeswiet J, Micari F, Hirt G, et al. Asymmetric single point incremental forming of sheet metal[J]. Annals of CIRP, 2005, 54(2): 623-649.
  • 3Viswanathan V, Kinsey B, Cao J. Experimental implementation of neural network springback control for sheet metal forming. Journal of Engineering Materials and Technology [J]. Transactions of the ASME, 2003, 125(2): 141-147.
  • 4甘文星,莫健华.金属板材数控单点渐进成形回弹的实验研究[J].机械科学与技术,2004,23(6):739-741. 被引量:22
  • 5Ambrogio G, Filice L, De Napoli L. A simple approach for reducing profile diverting in a single point incremental forming process[J]. Proceedings of the Institution of Mechanical Engineers: Part B (Journal of Engineering Manufacture), 2005, 219 ( 11 ) : 823-830.
  • 6北泽君义,守国荣时.薄板の精密ィソクリメソタルフォ一ミソゲヘの形状修正アルゴリズムの应用[J].塑性と加工,2003,44(506):30-34.
  • 7田旭光,宋彤,刘宇新.结合遗传算法优化BP神经网络的结构和参数[J].计算机应用与软件,2004,21(6):69-71. 被引量:64

二级参考文献9

  • 1[3]Miller, G.F,Todd,P.M.and Hedge,S. U. Designing neural networks using genetic algorithms. Proccedings of Third International Conference on Genetic Algorithms, pp. 379 ~ 384,1989.
  • 2[4]Gary G. Yen, Haiming Lu. Hierachical Genetic Algorithm Based on Neural Network Design. IEEE Symposium on Combinations of Evolutionary Computation and Neural Network,2000.
  • 3[5]Goldberg D E. Genetic Algorithms in Search. Optimization & Machine Learning. Addison-Wesley Publishing, 1989.
  • 4[6]M. Srinivas and L. M. Patnaik, Genetic search: analysis using fitness moments, IEEE Transactions on Knowledge and Data Engineering, Volume:8 Issue: 1, Feb. 1996.
  • 5Zhang L C.A mechanics model for sheet metal stamping using deformable dies[J].J.Mats.Processing Technology,1995,53:798-810
  • 6肖景容 姜奎华.冲压工艺学[M].北京:机械工业出版社,1994.61-64.
  • 7刘烈全 梁枢平.材料力学[M].华中理工大学出版社,1994..
  • 8朱东波,马雷,李涤尘,卢秉恒.复杂形状板料冲压件回弹评价指标研究[J].机械科学与技术,2000,19(6):953-955. 被引量:22
  • 9莫健华,刘杰,黄树槐.汽车大型覆盖件的数字化成形技术[J].塑性工程学报,2001,8(2):14-16. 被引量:12

共引文献119

同被引文献191

引证文献30

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部